0.6X - 2.4 - 0.6X = 0.75X + 1.83
0.75X = - 1.83 - 2.4
0.75X = - 4.23
X = - 5.64
ответ: - 5.64
Постройте график функции y=f(x).
Гипербола, полученная сдвигом графика у= на 1 вверх по оу. у(-2)=0,5 ;у(-1)=1 ;у(-2)=0,5 ;у(2)=-0,5 ;у(1)=-1 ;у(2)=-0,5
2. f '(x)= ( ) ' = .
3. Уравнения касательной y =к (x −x₀)+f (x₀) .
Прямая y= , к=1\4.
Найдем точку касания
(x-2)²=0 , x=2.
f (2)=-1\2+1=0,5
y =0,25* (x −2)+0,5
у=0,25х
Вторая касательная пройдет через х=-2
f (-2)=1\2+1=1,5
y =0,25* (x −2)+1,5
у=0,25х+1
4. Наименьшее значение функции у'=(x−f(x) ) '=(х)' =
=1 -= .
у'=0 , ,х=1 , х=-1.
На промежутке [1/2;∞) лежит только х=1
у'[1\2] - - - - -(1)+ + + + +
y ↓ ↑
x=1 точка минимума.
Наименьшее значение может быть при х=1\2 или х=1:
у(1\2) = .
у(1)= 1+1-1=1.
Наименьшее значение функции х-f(x) равно -0,5
Пошаговое объяснение:
ответ:
y = - 3x + 2 и y = kx - 5 пересекаются, значит мы приравниваем эти функции:
-3x + 2 = kx - 5
kx + 3x = 7
x(k + 3) = 7
1. x₁ = 7, тогда k должно быть -2 (так как 7 · (-2 + 3) = 7 · 1 = 7)
2. k + 3 = 7 ⇒ k = 4, тогда x₂ должно быть 1 (так как 1 · (4 + 3) = 7)
отсюда:
1. y₁ = -3 · 7 + 2 = -19
2. y₂ = 4 · 1 - 5 = -1 ≠ y₁ следовательно, подставим x и k из первого заключения:
y₂ = -2 · 7 - 5 = -14 - 5 = -19 = y₁
получится точка a:
a(7; -19)
найдём, при каком k функция y = kx + 4 проходит с точкой a, подставив значения из точки a(x; y):
y = kx + 4
-19 = k · 7 + 4
7k = -23
k = -23/7
пошаговое объяснение:
0.6X - 2.4 - 0.6X = 0.75X + 1.83
0.75X = - 1.83 - 2.4
0.75X = - 4.23
X = - 5.64
ответ: минус 5.64