При вытаскивании карт рассуждаем в такой модели: вынутые карты кладутся на стол в чётком порядке: первая слева, вторая по центру, третья – справа. Так, наример тройки «Т♦ К♦ 9♥» и «9♥ Т♦ К♦» считаются различными. Т.е., короче говоря, рассматриваем упорядоченные тройки.
All. Всего варианто вытащить три карты в такой модели поведения: Первая 36-стью Вторая 35-тью Третья – 34-мя
Всего вариантов упорядоченной выборки – 36*35*34.
I. Вынуть на первое место бубну можно 9-тью вынуть на второе место бубну можно 8-мью вынуть НЕ БУБНУ на третье место можно 27-мью НЕ 34!). Всего с НЕ-БУБНОЙ на третьем месте.
II. Вынуть на первое место бубну можно 9-тью вынуть НЕ БУБНУ на второе место можно 27-мью НЕ 34!), вынуть на третье место бубну можно 8-мью Всего с НЕ-БУБНОЙ на втором месте.
III. Вынуть НЕ БУБНУ на первое место можно 27-мью НЕ 34!), вынуть на второе место бубну можно 9-тью вынуть на третье место бубну можно 8-мью Всего с НЕ-БУБНОЙ на втором месте.
0. Вынуть на первое место бубну можно 9-тью вынуть на второе место бубну можно 8-тью вынуть на третье место бубну можно 7-мью Всего со всеми бубнами.
Всего подходящих вариантов : 9*8*27 + 9*8*27 + 9*8*27 + 9*8*7 = 9*8*(3*27+7) = 9*8*88
*** было бы ошибкой считать во всех трёх случаях I – III не 27, а 34 и не учитывать отдельно ситуацию [0], так как при этом получилось бы выражение 9*8*102, вместо 9*8*88, поскольку в этом случае были бы посчитаны трижды такие упорядоченные тройки, как, например «Т♦ К♦ Д♦» , когда Д♦ выбрана из 34, либо K♦ выбран из 34, либо Т♦, а две остальные только из бубен.
Итоговая вероятность
При вытаскивании карт рассуждаем в другой модели: вынутые карты кладутся на стол беспорядочно, т.е. тройки «Т♦ К♦ 9♥» , «9♥ Т♦ К♦» и т.п. считаются неразличимыми. Т.е., короче говоря, рассматриваем неупорядоченные тройки.
All. Всего варианто вытащить три карты в такой модели поведения: Первая 36-стью Вторая 35-тью Третья – 34-мя И их можно перемешать внутри тройки 6-тью а значит неразличимых вариантов в 6 раз меньше:
Всего вариантов упорядоченной выборки – 36*35*34/6 = 6*35*34.
ДВЕ БУБНЫ Вынуть на одно из мест бубну можно 9-тью вынуть на ещё одно из мест бубну можно 8-мью причём эти места можно поменять местами, значит выбрать пары бубен можно К ним можно приложить НЕ БУБНУ 27-мью НЕ 34!). Всего с одной НЕ-БУБНОЙ на одном из мест мест.
ТРИ БУБНЫ Вынуть на одно из мест бубну можно 9-тью вынуть на ещё одно из мест бубну можно 8-тью вынуть на последнее из мест бубну можно 7-мью И их можно перемешать внутри тройки 6-тью а значит неразличимых вариантов в 6 раз меньше: Всего со всеми бубнами.
Всего подходящих вариантов : 9*4*27 + 3*4*7 = 3*4*(3*27+7) = 3*4*88
*** было бы ошибкой смешивать случай с двумя и с тремя бубнами, считая третью карту не одной из 27, а сразу одной из 34, так как при этом получилось бы выражение 3*4*102, вместо 3*4*88, поскольку в этом случае были бы посчитаны трижды такие неупорядоченные тройки, как, например «Т♦ К♦ Д♦», когда Т♦ выбран из 34, либо K♦ выбран из 34, либо Д♦, а две остальные из девяти и восьми.
Действие возведения в квадрат – точно соответствует нахождению площади квадрата со стороной, длина которой равна числу, возводимому в квадрат. Ну, например, мы хотим возвести в квадрат понятно, что но мы не будем сразу возводить в квадрат, а попробуем разобраться в этом графически. Взглянем на рисунок (приложен к объяснению)
Как мы видим, если мы сложим только (это зелёный квадрат) и (это оранжевый квадрат), то мы не получим площадь квадрата со стороной Чтобы получить правильную сумму необходимо прибавить ещё два жёлтых прямоугольника с площадями
Тогда получиться, что:
;
Ну и так же легко проверить, что:
;
А вот: потому: ;
Если бы мы проводили такие рассуждения не для и а для каких-то любых и то получилось бы всё аналогично:
;
Итак: ;
Тоже самое можно доказать и аналитически (алгебраически), если предварительно обозначить как :
;
Если вы всё уловили, то вам не сложно будет доказать аналитически, что:
;
Для разности тоже можно изобразить иллюстрацию с площадями, но она получится более путанной и в ней тяжелее разобраться, чем доказывать разность аналитически. Но разобраться можно, и она, конечно же, полностью соответствует формулам, представленным выше.
Для вашей конкретной ситуации получим:
;
;
Но вообще, я бы рекомендовала, решать данную задачу совсем через другую формулу!
Есть такая формула формула [2] ;
Это легко доказать так
;
Так что, теперь воспользуемся формулой [2] в вашем случае и получим:
;
;
Обозначим и тогда:
;
Значит: что возможно только если выражение в скобках равна нулю, т.е.:
All.
Всего варианто вытащить три карты в такой модели поведения:
Первая 36-стью
Вторая 35-тью
Третья – 34-мя
Всего вариантов упорядоченной выборки – 36*35*34.
I.
Вынуть на первое место бубну можно 9-тью
вынуть на второе место бубну можно 8-мью
вынуть НЕ БУБНУ на третье место можно 27-мью НЕ 34!).
Всего с НЕ-БУБНОЙ на третьем месте.
II.
Вынуть на первое место бубну можно 9-тью
вынуть НЕ БУБНУ на второе место можно 27-мью НЕ 34!),
вынуть на третье место бубну можно 8-мью
Всего с НЕ-БУБНОЙ на втором месте.
III.
Вынуть НЕ БУБНУ на первое место можно 27-мью НЕ 34!),
вынуть на второе место бубну можно 9-тью
вынуть на третье место бубну можно 8-мью
Всего с НЕ-БУБНОЙ на втором месте.
0.
Вынуть на первое место бубну можно 9-тью
вынуть на второе место бубну можно 8-тью
вынуть на третье место бубну можно 7-мью
Всего со всеми бубнами.
Всего подходящих вариантов : 9*8*27 + 9*8*27 + 9*8*27 + 9*8*7 = 9*8*(3*27+7) = 9*8*88
*** было бы ошибкой считать во всех трёх случаях I – III не 27, а 34 и не учитывать отдельно ситуацию [0], так как при этом получилось бы выражение 9*8*102, вместо 9*8*88, поскольку в этом случае были бы посчитаны трижды такие упорядоченные тройки, как, например «Т♦ К♦ Д♦» , когда Д♦ выбрана из 34, либо K♦ выбран из 34, либо Т♦, а две остальные только из бубен.
Итоговая вероятность
При вытаскивании карт рассуждаем в другой модели: вынутые карты кладутся на стол беспорядочно, т.е. тройки «Т♦ К♦ 9♥» , «9♥ Т♦ К♦» и т.п. считаются неразличимыми. Т.е., короче говоря, рассматриваем неупорядоченные тройки.
All.
Всего варианто вытащить три карты в такой модели поведения:
Первая 36-стью
Вторая 35-тью
Третья – 34-мя
И их можно перемешать внутри тройки 6-тью а значит неразличимых вариантов в 6 раз меньше:
Всего вариантов упорядоченной выборки – 36*35*34/6 = 6*35*34.
ДВЕ БУБНЫ
Вынуть на одно из мест бубну можно 9-тью
вынуть на ещё одно из мест бубну можно 8-мью
причём эти места можно поменять местами, значит выбрать пары бубен можно
К ним можно приложить НЕ БУБНУ 27-мью НЕ 34!).
Всего с одной НЕ-БУБНОЙ на одном из мест мест.
ТРИ БУБНЫ
Вынуть на одно из мест бубну можно 9-тью
вынуть на ещё одно из мест бубну можно 8-тью
вынуть на последнее из мест бубну можно 7-мью
И их можно перемешать внутри тройки 6-тью а значит неразличимых вариантов в 6 раз меньше:
Всего со всеми бубнами.
Всего подходящих вариантов : 9*4*27 + 3*4*7 = 3*4*(3*27+7) = 3*4*88
*** было бы ошибкой смешивать случай с двумя и с тремя бубнами, считая третью карту не одной из 27, а сразу одной из 34, так как при этом получилось бы выражение 3*4*102, вместо 3*4*88, поскольку в этом случае были бы посчитаны трижды такие неупорядоченные тройки, как, например «Т♦ К♦ Д♦», когда Т♦ выбран из 34, либо K♦ выбран из 34, либо Д♦, а две остальные из девяти и восьми.
Итоговая вероятность
О т в е т: