Пошаговое Обозначим через а цифру десятков этого двузначного числа.
Тогда цифра единиц этого число должна быть равной 2а, само двузначное число можно будет записать в виде 10а + 2а = 12а, а то число, которое получается из исходного путем перестановки его цифр — в виде 2а * 10 + а = 20а + а = 21а.
В исходных данных к данному заданию сообщается, что полученное путем перестановки цифр число больше исходного на 27, следовательно, можем составить следующее уравнение:
Первое решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 = √6/2. Для площади S этого треугольника имеют место равенства . Откуда находим AH = √3/3
Второе решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Треугольники AOA1 иHOA подобны по трем углам. Следовательно, AA1:OA1 = AH:AO. Откуда находим AH = √3/3.
Третье решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Откуда sin угла AOA1=√6/3 и, следовательно, AH=AO* sin угла AOH=√3/3
Пошаговое Обозначим через а цифру десятков этого двузначного числа.
Тогда цифра единиц этого число должна быть равной 2а, само двузначное число можно будет записать в виде 10а + 2а = 12а, а то число, которое получается из исходного путем перестановки его цифр — в виде 2а * 10 + а = 20а + а = 21а.
В исходных данных к данному заданию сообщается, что полученное путем перестановки цифр число больше исходного на 27, следовательно, можем составить следующее уравнение:
21а = 27 + 12а,
решая которое, получаем:
21а - 12а = 27;
9а = 27;
а = 27 / 9 = 3.
Следовательно, искомое число это 36.
ответ: 36.объяснение: