Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ; В следующих двух слагаемых вынесем общий множитель "40": ; В итоге получим следующее уравнение: . В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо будет стоять ; Это приведет к тому, что придется убавить ; В итоге: ; Слева стоит квадрат суммы. Уравнение примет вид: ; Сворачивая еще раз: ; Получаем серию прямых: ; А теперь приступим к рассмотрению первого уравнения.
Это уравнение задает круг с центром в точке (0, 0) и радиусом ; Рассмотрим прямую ; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников. ; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты ; Ну а все решения:
251, х руб. - стоит 1 кг колбасы у руб. - стоит 1 кг сыра
10х - 7у=472 х-у=16
10х - 7у=472 х=16+у
10(16+у) -7у=472 х=16+у
160+10у-7у=472 х=16+у
3у=312 х=16+у
у=104(руб.) - стоит 1 кг сыра х=120(руб.) - стоит 1 кг колбасы
260. х руб. - стоит 1 кг слив х+8 руб. - стоит 1 кг яблок х+8+12,8 руб. - стоит 1 кг груш 8,5х руб. - заплатили за сливы 15,2(х+8) руб. - заплатили за яблоки 10,5(х+8+12,8) руб. - заплатили за груши Всего заплатили 1133,44 руб.
Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности:
; В следующих двух слагаемых вынесем общий множитель "40":
; В итоге получим следующее уравнение:
. В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо
будет стоять
; Это приведет к тому, что придется убавить
; В итоге:
; Слева стоит квадрат суммы. Уравнение примет вид:
; Сворачивая еще раз:
; Получаем серию прямых:
; А теперь приступим к рассмотрению первого уравнения.
Это уравнение задает круг с центром в точке (0, 0) и радиусом
; Рассмотрим прямую
; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников.
; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты
; Ну а все решения: