В коробке лежат шарики красного, жёлтого, зелёного, синего и белого цвета. Шариков каждого цвета разное число, не менее 1 и не более 9. Жёлтых, зелёных, синих и белых вместе - 29, а красных, жёлтых, зелёных и синих вместе - 30. Сколько красных шариков?
РЕШЕНИЕ: Так как жёлтых, зелёных, синих и белых вместе - 29, а жёлтых, зелёных, синих и красных вместе - 30, то красных шариков на 1 больше, чем белых.
Заметим, что 30 - это сумма четырех наибольших возможных значений 9+8+7+6=30. Значит, красных шариков 6, 7, 8 или 9.
Если красных шариков 9, то белых - 8, но 8 шариков уже есть - жёлтых, зелёных или синих - не может быть.
Если красных шариков 8, то белых - 7, но 7 шариков уже есть - жёлтых, зелёных или синих - не может быть.
Если красных шариков 7, то белых - 6, но 6 шариков уже есть - жёлтых, зелёных или синих - не может быть.
Если красных шариков 6, то белых – 5 – все сходится.
Всего --- 14 п. Коля ? п., но в 2 р < Вити Витя ? п Коли < Женя --- ? п. < Вити Решение. Пусть Коля съел 1 часть всех пирожков , а Женя съел столько, сколько Коля (1 часть). Тогда Витя съел 2 части, так как он съел в два раза больше. 1 + 1 + 2 = 4 (части) съели бы все вместе 14 : 4 = 3 (п.) (и 2 пирожка остаток) приходится на 1 часть. Значит, Коля съел 3 пирожка 3 * 2 = 6 (п.) столько пирожков съел Витя. 3 + 2 = 5 (п) столько пирожков съел Женя. Остаток 2 пирожка меньше, чем одна часть, поэтому женя съел не две части, как Витя, а меньше. Но больше Коли. ответ: Коля съел 3 пирожка, Женя 5 пирожков, Витя 6 пирожков
5/Задание № 4:
В коробке лежат шарики красного, жёлтого, зелёного, синего и белого цвета. Шариков каждого цвета разное число, не менее 1 и не более 9. Жёлтых, зелёных, синих и белых вместе - 29, а красных, жёлтых, зелёных и синих вместе - 30. Сколько красных шариков?
РЕШЕНИЕ: Так как жёлтых, зелёных, синих и белых вместе - 29, а жёлтых, зелёных, синих и красных вместе - 30, то красных шариков на 1 больше, чем белых.
Заметим, что 30 - это сумма четырех наибольших возможных значений 9+8+7+6=30. Значит, красных шариков 6, 7, 8 или 9.
Если красных шариков 9, то белых - 8, но 8 шариков уже есть - жёлтых, зелёных или синих - не может быть.
Если красных шариков 8, то белых - 7, но 7 шариков уже есть - жёлтых, зелёных или синих - не может быть.
Если красных шариков 7, то белых - 6, но 6 шариков уже есть - жёлтых, зелёных или синих - не может быть.
Если красных шариков 6, то белых – 5 – все сходится.
ОТВЕТ: 6 шариков