Наибольший результат получим, если числа KAN и GA будет как можно больше, а число ROO как можно меньше.
Начнем с чисел KAN и GA: K=9 как цифра в самом старшем разряде. Далее цифрам А и G необходимо присвоить значения 8 и 7, причем именно в таком порядке, поскольку А встретится еще раз в разряде единиц, поэтому нам выгодно присвоить ей наибольшее значение. Последняя цифра N=6.
Для числа ROO поступим наоборот: старшем разряду присвоим наименьшее возможное значение: R=1, далее O=2.
Итого: 986+78-122=942
ответ: 942
ответ:Сколько учеников принимали участие в олимпиаде по математике
264:8•3=99 учеников
264-99=165 учеников не принимали участие в олимпиаде по математике,это решта
Сколько учеников были на олимпиаде по физике?
165:15•7=77 учеников
Решту примем за 1 целую часть и переведём ее в дробь
1=15/15 и узнаём какая часть учеников была на олимпиаде по информатике
15/15-7/15=8/15
А теперь-сколько учеников составляет
8/15
165:15•8=88 учеников
Хотя можно было о них узнать проще
165-77=88 учеников
Проверка
77+88+99=264 ученика
Пошаговое объяснение:
323 456 : (389-890)=323 546 : (-501)=645(311/501)