Нет
Пошаговое объяснение:
Рассмотрим все цифри:
0, 2, 4, 5, 6, 8 - не могут быть этими цифрами, так как любое число, которое заканчивается на одно из них не будет простым
Остаётся 1, 3, 7, 9
Из них складываем пары чисел по три:
1, 3, 9 - выходят числа 139, 193, 319(не простое), 391(не простое), 913(не простое), 931(не простое). Значит, откидываем этот вариант
1, 3, 7 - 137, 173, 317, 371(не простое), 713(не простое), 731(не простое). Этот вариант тоже откидываем
1, 7, 9 - 179, 197, 719, 791(не простое), 917(не простое), 971. Не подходит
3, 7, 9 - 379, 397, 739, 793(не простое), 937, 973(не простое). И этот вариант тоже не подходит.
Значит, таких цифр не существует.
У них общее основание - АС, и равные углы при основании, т. к. углы при основании в равнобедренном треугольнике равны. Имеем: угол NAC = углу MCA по условию задачи, но углы BAC=BCA, то есть равны и другие части этих углов - угол МАN=NCM. Таким образом треуг. AMC=треуг. ANC по стороне и двум углам.
В равных треугольниках против равных углов лежат равные стороны. След-но, AM=NC. Так как треуг. ABC - равнобедренный, то MB=NC, (AB-AM =MB) = (BC-NC=BN), где AB=BC AM=NC.
То есть треуг. MBN - равнобедренный.