Можно взять масштаб: <<10 млн. кв. км-1см>> Число ошибок учеников в 6 класса в диктанте по родному языку дано в таблице. Отразите эти данные в столбчнатой диаграмме.
Пусть R — радиус шара. Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань. Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты . По известной формуле площадь такой «шапочки» равна . Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы. Обозначив количество больших граней через n, получим , то есть . Решение заканчивается проверкой того, что . Примечание. Легко видеть, что у куба шесть больших граней. Поэтому приведенная в задаче оценка числа больших граней является точной.
Общее число кубиков по формуле объема N = 4*5*6 = 120 штук - всего. По три грани окрашено - в вершинах N3= 8 шт По две грани окрашено - на четырёх ребрах без вершин - уменьшаем длину ребра на 2 см каждое. N2= 4*(2+3+4)= 4*9 = 36 штук По одной грани - по 2 грани на 2 см меньше N1 = 2*(2*3+2*4 + 3*4) = 2*(6+8+12) = 52 кубика Совсем не окрашено - внутри кубика - все размеры уменьшаем на 2 см. N0 = 2*3*4 = 24 шт. Проверка: ВСЕГО =8 (по три) + 36 (по две) +52 (по одной) + 24 (не окр.) = 120 шт. ответ: (текст по проверке)
Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.
Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .
По известной формуле площадь такой «шапочки» равна .
Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.
Обозначив количество больших граней через n, получим , то есть .
Решение заканчивается проверкой того, что .
Примечание. Легко видеть, что у куба шесть больших граней.
Поэтому приведенная в задаче оценка числа больших граней является точной.