М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
grekorim1998a
grekorim1998a
10.12.2021 03:32 •  Математика

ВЫСШАЯ МАТЕМАТИКА. Используя формулы Бернулли и Пуассона, решить следующую задачу.
Прививка от гриппа даёт положительный результат в 70% случаев. Найти вероятность,что в группе из 15 человек более,чем для двух, она будет бесполезной. ​

👇
Ответ:
ErnurNick
ErnurNick
10.12.2021
Добрый день!

Чтобы решить эту задачу, мы воспользуемся формулами Бернулли и Пуассона.

Формула Бернулли позволяет нам вычислять вероятность успеха (в данном случае, положительного результата прививки от гриппа) в определенном количестве независимых испытаний (количество человек в группе). Формула имеет следующий вид:

P(k) = C(n, k) * p^k * (1-p)^(n-k),

где P(k) - вероятность, что произойдет k успешных результатов в n испытаниях, C(n, k) - количество сочетаний из n по k, p - вероятность одного успешного испытания, (1-p) - вероятность неуспешного испытания.

В нашей задаче, n = 15 (количество людей в группе), p = 0.7 (вероятность положительного результата прививки), и мы хотим найти вероятность P(k), где k > 2 (вероятность бесполезности прививки).

Однако, чтобы применить формулу Бернулли, нам нужны значения P(3), P(4), ... , P(15), но вычислять каждую из этих вероятностей вручную достаточно трудоемко. В таких случаях, мы можем воспользоваться формулой Пуассона, которая позволяет нам приближенно вычислить эти вероятности.

Формула Пуассона имеет следующий вид:

P(k) ~ (e^(-λ) * λ^k) / k!,

где λ = n * p - математическое ожидание или среднее число успешных результатов в n испытаниях. В нашем случае, λ = 15 * 0.7 = 10.5.

Теперь мы можем пошагово решить задачу:

1. Вычислим вероятность P(k) для k > 2, используя формулу Пуассона:
P(k) = (e^(-10.5) * 10.5^k) / k!.

2. Найдем сумму всех таких вероятностей:
P(>2) = P(3) + P(4) + ... + P(15).

3. Применим формулу Пуассона для каждого значения k, начиная с k = 3. Вычислим вероятность P(k) для каждого k и найдем их сумму.

Очень важно отметить, что формулы Бернулли и Пуассона являются лишь приближением и используются для расчета вероятностей в больших выборках или при большом количестве испытаний. В реальной жизни, вероятность может отличаться от вычисленной с помощью этих формул.

Надеюсь, данное объяснение поможет вам понять и решить задачу. Если у вас возникнут еще вопросы, не стесняйтесь задавать!
4,7(58 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ