Линейные уравнения ах = b, где а ≠ 0; x=b/a.
Пример 1. Решите уравнение – х + 5,18 = 11,58.
– х + 5,18 = 11,58;
– х = – 5,18 + 11,58;
– х = 6,4;
х = – 6,4.
ответ: – 6,4.
Пример 2. Решите уравнение 3 – 5(х + 1) = 6 – 4х.
3 – 5(х + 1) = 6 – 4х;
3 – 5х – 5 = 6 – 4х;
– 5х + 4х = 5 – 3+6;
– х = 8;
х = – 8.
ответ: – 8.
Пример 3. Решите уравнение .
. Домножим обе части равенства на 6. Получим уравнение, равносильное исходному.
2х + 3(х – 1) = 12; 2х + 3х – 3 =12; 5х = 12 + 3; 5х = 15; х = 3.
ответ: 3.
Пример 4. Решите систему
Из уравнения 3х – у = 2 найдём у = 3х – 2 и подставим в уравнение 2х + 3у = 5.
Получим: 2х + 9х – 6 = 5; 11х = 11; х = 1.
Следовательно, у = 3∙1 – 2; у = 1.
ответ: (1; 1).
Замечание. Если неизвестные системы х и у, то ответ можно записать в виде ко
Пошаговое объяснение:
надеюсь правильно
ответ: рассмотрим , для решения которых некоторую величину можно принять за одну или несколько частей. при решении таких бывает полезно делать рисунки, облегчающие решение.
1. в двух коробках лежит 120 дисков – в первой коробке в 3 раза больше дисков, чем во второй. сколько дисков лежит в каждой коробке?
решение:
представим содержимое коробок в виде частей. если диски, находящиеся во второй коробке, составляют 1 часть, то в первой коробке – 3 такие части. сделаем схематический рисунок:
на части
1) сколько частей составляют 120 дисков?
1 + 3 = 4 (части)
2) сколько дисков приходится на 1 часть?
120 : 4 = 30 (дисков)
3) сколько дисков находится в первой коробке?
30 · 3 = 90 (дисков)
ответ: 90 – в первой коробке, 30 – во второй.
2. некто заплатил за книжку на 120 рублей больше, чем за тетрадь. известно, что книга дороже тетради в 4 раза. сколько стоит книга?
решение:
представим стоимость в виде частей. если стоимость тетради составляет 1 часть, то стоимость книги составляет 4 такие же части. сделаем схематический рисунок:
решение на части
1) 4 - 1 = 3 (части) – приходится на 120 рублей.
2) 120 : 3 = 40 (рублей) – приходится на 1 часть.
3) 4 · 40 = 160 (рублей) – стоит книга.
ответ: книга стоит 160 рублей.
3. в первой коробке на 6 карандашей больше, чем во второй, а в двух вместе 30 карандашей. сколько карандашей в каждой коробке?
решение:
сделаем схематический рисунок:
на нахождение части
1) если из первой коробки вынуть 6 карандашей, в ней станет столько же карандашей, сколько и во второй:
30 - 6 = 24 (кар.)
2) найдём число карандашей в каждой из коробок:
24 : 2 = 12 (кар.)
3) теперь вернём 6 карандашей в первую коробку:
12 + 6 = 18 (кар.)
ответ: в первой коробке 18 карандашей, во второй – 12.
пошаговое объяснение: