Если перефразировать условие, то в задаче необходимо найти натуральное число, которое при делении на 4;5;6 дает в остатке 1, к тому же делится на 7.
Пусть искомое число равно х. Отбросив единицу, полученное число (х-1) будет делиться нацело на 4;5;6, а, значит, и на их НОК(4;5;6)=60, и, следовательно (х-1)= 60*к, где к- натуральное число, откуда х=60к+1, но т.к. х делится нацело на 7, легко подбираем наименьшее число к, путем перебора к,
при к=1, х=61;
при к=2, х=121;
при к=3, х=181;
при к=4, х=241;
при к=5, х=60*5+1=301- это число является наименьшим которое удовлетворяет условию задачи.
ответ 301
От перестановки слагаемых сумма не меняется.
В буквенном виде свойство записывается так: a + b = b + a
Сочетательное свойство сложения
Чтобы к сумме двух чисел прибавить третье число можно к первому числу прибавить сумму второго и третьего числа.
В буквенном виде: (a + b) + c = a + (b + c)
Так как результат сложения трёх чисел не зависит от того, как поставлены скобки, то скобки можно не ставить и писать просто
a + b + с.
(a + b) + c = a + (b + c) = a + b + c