Для дифференцирования понадобится несколько формул:
\begin{gathered}\left( f(x) + g(x) \right)' = f'(x) + g'(x)left( n\cdot f(x) \right)' = n\cdot f'(x)left( x^n \right)' = n \cdot x^{x-1}\end{gathered}
(f(x)+g(x))
′
=f
′
(x)+g
′
(x)
(n⋅f(x))
′
=n⋅f
′
(x)
(x
n
)
′
=n⋅x
x−1
Исходное выражение удобно представить в виде:
F(x) = 3 \sqrt[3]{x^2} - x = 3 x^{2/3} - xF(x)=3
3
x
2
−x=3x
2/3
−x
Продифференцировав его, получаем:
\begin{gathered}F'(x) = (3 x^{2/3} - x)' = (3 x^{2/3})' - (x)' = 3 \cdot \dfrac{2}{3} \cdot x^{2/3 - 1} - 1 = 2\cdot x^{-1/3} - 1 = \dfrac{2}{\sqrt[3]{x}} - 1F'(1) = \dfrac{2}{\sqrt[3]{1}} - 1 = 2 - 1 = 1\end{gathered}
F
′
(x)=(3x
2/3
−x)
′
=(3x
2/3
)
′
−(x)
′
=3⋅
3
2
⋅x
2/3−1
−1=2⋅x
−1/3
−1=
3
x
2
−1
F
′
(1)=
3
1
2
−1=2−1=1
a(a + 5b) - (a + b)(a - b)=a^2+5ab-a^2+b^2=5ab+b^2
b(3a-b) - (a - b)(a + b)=3ab-b^2-a^2+b^2=3ab-a^2
(y+10)(y-2)-4y(2 - 3y)=y^2+8y-20-8y+12y^2=13y^2-20
(a-4)(a+9)-5a(1-2a)=a^2+5a-36-5a+10a^2=11a^2-36
(2b-3)(3b+2)-3b(2b+3)=6b^2-9b+4b-6-6b^2-9b=-14b-6
(3a-1)(2a-3)-2a(3a+5)=6a^2-2a-6a+4-6a^2-10a=-18a+4
(m+3)^2 -(m-2)(m+2)=m^2+6m+9-m^2+4=5m+13
(a-1)^ - (a+1)(a-2)=a^2-2a+1-a^2-a-2=-3a-1
(c+2)(c-3)-(c-1)^2=c^2-c-6-c^2+2c-1=c-7
(y-4)(y+4)-(y-3)^=y^2-16-y^2+6y-9=6y-25
(a-2)(a+4)-(a+1)^ =a^2+2a-8-a^2-2a-1=-9
(b-4)(b+2)-(b-1)^=b^2-2b-8-b^2+2b-1=-9