3,2*0,3=0,96 см2
Пошаговое объяснение:
cos(α+β)+2sinαsinβ=cosαcosβ−sinαsinβ+2sinαsinβ=
cosαcosβ+sinαsinβ=cos(α−β)
если \alpha -\beta=\piα−β=π , то cos(\alpha -\beta ) =cos\pi =-1.cos(α−β)=cosπ=−1.
б)
\frac{sin^{2}\alpha +sin(\pi-\alpha)cos (\frac{\pi }{2} -\alpha) }{tq(\pi+\alpha)ctq( \frac{3\pi }{2} -\alpha ) } = \frac{sin^{2}\alpha +sin\alpha*sin\alpha }{tq\alpha*tq\alpha } =\frac{2sin^{2} \alpha }{tq^{2} \alpha } =\frac{2sin^{2}\alpha }{\frac{sin^{2} \alpha }{cos^{2} \alpha } } =2cos^{2} \alpha .
tq(π+α)ctq(
2
3π
−α)
sin
2
α+sin(π−α)cos(
2
π
−α)
=
tqα∗tqα
sin
2
α+sinα∗sinα
=
tq
2
α
2sin
2
α
=
cos
2
α
sin
2
α
2sin
2
α
=2cos
2
α.
в)
cos7xcos6x+sin7xsin6x=cos(7x-6x)=cosx.cos7xcos6x+sin7xsin6x=cos(7x−6x)=cosx.
Итак, 1-я сторона равно (8+1/5) см, 2-я на (1+4/5) см меньше первой.
В первом действии найдем 2-ю сторону
1) (8+1/5) - (1+4/5) = 8+1/5-1-4/5 = (переставим слагаемые)
= 8-1-4/5+1/5=
7-4/5+1/5=
6+1-4/5+1/5=
6 +1/5+1/5=6+1/5+1/5=6+2/5= (шесть целых две пятых)
Во вторм действии найдем сумму этих сторон:
2)(8+1/5)+(6+2/5) = (раскроем скобки и сгруппируем)= 8+6+1/5+2/5 = 14+3/5 = (четырнадцать целых три пятых)
В третьем действии найдем третью сторону:
3)(14+3/5) - (3+4/5) = (раскроем скобки и сгруппируем) = 14+3/5-3-4/5 = 14-3-4/5+3/5=
11-4/5+3/5=10+1-4/5+3/5=10+1/5+3/5=10+4/5 = = (десять целых четыре пятых)
В четвертом действии, найдем периметр, равный сумме длин всех сторон:
4) (8+1/5)+(6+2/5)+(10+4/5) = (раскроем скобки и сгруппируем) = 8+1/5+6+2/5+10+4/5 =
= 8+6+10+1/5+2/5+4/5 = 24 + 7/5 = 24 + 1 + 2/5 = 25 + 2/5 = = (двадцать пять целых две пятых)
96 см2
Пошаговое объяснение:
3см 2 мм =32 мм
32*30=960 мм2= 96 см2