В12 часов от автовокзала отошёл автобус со скоростью 60 км\ч. а через полчаса вслед за ним выехала машина со скоростью 75 км\ч. через сколько часов после своего выезда машина обгонит автобус на 15 км?
1) Соединим точку вершину S и центр О, проведём диагональ ВD ⇒ BO=OD, BO=1/2BD=1/2*30=15, SO=√(SB²-BO²)=√(17²-15²=√64=8 по теореме Пифагора 2) В ΔSBC - SR медиана и высота, BC=AB ⇒SΔSBC=1/2BC*SR=1/2*16*7=56 ⇒ площадь всей боковой поверхности равна 3*56=168 3) т.к. параллельные рёбра равны, то BB₁=AA₁=6 ΔBB₁D₁-прямоугольный ⇒ B₁D₁=√(BD₁-BB₁)=√((√70)²-6²)=√34 ΔB₁A₁D₁-прямоугольный ⇒ A₁B₁=√(B₁D₁-A₁D₁)=√((√34)²-5²)=√9=3 4) по теореме Пифагора находим диагональ квадрата(основания) √(2²+2²)=√8=√(4*2)=2√2, теперь также по Пифагору находим высоту т.к. катет это половина диагонали, то h=√((√11)²-(√2)²)=√9=3
Можно воспользоваться таким следствием из второго замечательного предел что lim \ x->0 \ \frac{ln(1+x)}{x}=1lim x−>0 xln(1+x)=1 Перейдем к нашему пределу \begin{lgathered}x->2 \ \ (3x-5)^{\frac{2x}{x^2-4}} x->2 \ \ e^{\frac{ln(3x-5)*2x}{x^2-4}}end{lgathered}x−>2 (3x−5)x2−42xx−>2 ex2−4ln(3x−5)∗2x сделаем теперь некую замену x-2=yx−2=y , тогда y->0y−>0 предел примет вид без основания \begin{lgathered}y->0 \ \frac{ln(3y+1)*2(y+2)}{y^2-4y} y->0 \ \frac{ln(3y+1)*4}{3y(\frac{y}{3}+\frac{4}{3})}= y->0 \ \ 1*\frac{4}{\frac{4}{3}}=3\end{lgathered}y−>0 y2−4yln(3y+1)∗2(y+2)y−>0 3y(3y+34)ln(3y+1)∗4=y−>0 1∗344=3 то есть предел равен e^3e3
30+15=45
75-60=15км/ч
45/15=3 часа