Каким образом можно представить закон распределения непрерывной случайной величины, т.е. величины, которая может принимать любые значения на некотором промежутке числовой оси, и число ее возможных значений всегда бесконечно?
Для непрерывной случайной величины вероятность того, что она примет какое-то одно определенное значение, всегда равна нулю. Но можно определить вероятность того, что эта величина примет значение из некоторого промежутка.
Для этого можно использовать функцию плотности распределения вероятностиf(x) (ее еще называютплотностью вероятностиилиплотностью распределения).
Вероятность того, что непрерывная случайная величина х примет значение из некоторого промежутка [a;b], определяют по формуле:
Пошаговое объяснение:
10 - общее кол-во всех заб.шайб
3/5*10 = забили хоккеисты России
4/10*10 = забили хоккеисты Канады
3/5*10 = 6 шайб
4/10*10 = 4 шайбы
6+4=10
Значит, Россия победила Канаду со счетом 6-4.
2.
3/5=6/10
4/10+6/10=1
1 - кол-во всех шайб, разделенное на 10
(4/10+6/10)*10=1*10
4+6=10
Значения те же. Этот я придумал на ходу, поэтому учителя могут не понять.
℗