№1
-1,2 * (-15) = (-1 * 1,2) * (-1 * 15) = (-1 * (-1)) * (1,2 * 15) = 1 * 18 = 18
-1,95 - 8,68 = -1 * (1,95 + 8,68) = 10,63
-17 - 19 + 5 = -1 * (17 + 19 - 5) = -21
-13,5 : 0,9 = -1 * (13,5 : 9/10) = -1 * (13,5 * 10 : 9) = -1 * (15) = -15
№2
-15 -14 -13 -12 ... -1 0 1 ... 15 16
Если посчитать будет 15 отрицательных, 1 ноль и 16 положительных. Итого 15 + 1 + 16 = 32 числа
№3
3(4x + 5) - (21 + 12x) = 12x + 15 - (21 + 12x) = 12x + 5 - 21 - 12x = 0 + 5 - 21 = -1 * (21 - 5) = -16
№4
4x - 2,55 = -2x + 1,05
4x + 2x = 2,55 + 1,05
6x = 3,6
x = 0,6
№5
Прикрепленный файл.
Пошаговое объяснение:
Даны точки А(-4; -7); В(4; 4); С(8; -8).
Знайти:
а) периметр трикутника.
Находим длины сторон по разности координат.
Координаты векторов сторон
АВ (c) BC (a) AС (b)
x y x y x y
8 11 4 -12 12 -1.
Длины сторон АВ (с) = √(64 + 121) = √185 ≈ 13,60147051,
BC (а) = √(16 + 144) = √160 ≈ 12,64911064,
AC (b) = √(144 + 1) = √145 ≈ 12,04159458.
Периметр Р = 38,29217573.
б) рівняння бісектриси проведеної з т.А.
Находим координаты основания биссектрисы АА3 по её свойству - делить противоположную сторону в отношении прилегающих сторон.
Основание биссектрисы
λ(A) = 1,129540645 A3 = 6,121660646 -2,364981938.
Находим вектор АА3.
Вектор биссектрисы АА3.
x y Длина
AA3 10,12166065 4,635018062 11,13244837.
Уравнение биссектрисы АА3 каноническое
АA3: x + 4 = y + 7
10,12166065 4,635018062.
Уравнение биссектрисы АА3 общего вида
-4,635018062 x + 10,12166065 y + 52,31155227 = 0.
Уравнение биссектрисы АА3 с угловым коэффициентом
AA3: y = 0,457930593 x + -5,168277628.
в) рівняння медіани проведеної з т.В.
Находим координаты точки М (это основание медианы из точки В) как середины стороны АС.
М = (А(-4;-7) + С(8; -8))/2 = (2; -7,5).
Вектор ВМ = М(2; -7,5) - В(4; 4) = (-2; -11,5).
Находим уравнения медианы ВМ:
BМ: x - 4 = y - 4
-2 -11,5
-11,5x + 2y + 38 = 0,
y = 5,75x - 19.
г) рівняння висоти проведеної з т.С.
Сначала определяем уравнение стороны АВ по найденным координатам вектора АВ(8; 11) и точке А(-4; -7).
(x + 4)/8 = (y + 7)/11.
11x + 44 = 8y + 56. Отсюда получаем общее уравнение АВ.
АВ: 11x - 8y - 12 = 0.
В уравнении перпендикулярной прямой СС2 (это высота из точки С) коэффициенты А и В меняются на -В и А.
8x + 11y + C = 0. Для определения слагаемого С подставим координаты точки С. 8*8 + 11*(-8) + С = 0, отсюда С = 88 - 64 = 24.
Уравнение высоты из точки С:
СС2: 8x + 11y + 24 = 0.
y = -0,72727 x - 2,181818.