Ax + By + C = 0 Направляющий вектор этой прямой s={A,B}={2;-3}. Значит, нормальный вектор будет n={3;2} Вектор нормали перпендикулярный к даной прямой. Значит 3x + 2y + c = 0 По условию P(-5;13), откуда х=-5 и у=13. Подставим 3 * (-5) + 2* 13 + C = 0 -15 + 26 + C = 0 C = -11
Построим высоту АН к стороне ВС. в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН. известно, что АВ = 10, пусть АН = ВН = х, тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный. угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов. пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3 АС=2*5 корней из 2/3= 10 корней из 2/3
Пошаговое объяснение: