2у - х = 7
х^2 - 2ху + у^2 = 25
Выразим через первое уравнение х:
2у - х = 7
-х = 7 - 2у
Умножим обе части на -1:
х = -7 + 2у
Второе уравнение можем свернуть, как квадрат разности;
(х - у)^2 = 25
Подставим полученное х в это уравнение:
(-7 + 2у - у)^2 = 25
Выполним преобразования:
(-7 + у)^2 = 25
49 - 14у + у^2 - 25 = 0
24 - 14у + у^2 = 0
a = 1 b = (-14) c = 24
D = b^2 - 4*a*c = 196 - 4*24 = 196 - 96 = 100 = 10^2
у1 = (-b + ✓D) / 2*a = 14 + 10 / 2 = 12
у2 = (-b - ✓D) / 2*a = 14 - 10 / 2 = 2
Подставим получившиеся у в уравнение х = -7 + 2у, найдем х:
х1 = -7 + 2*12 = 17
х2 = -7 + 4 = -3
ответ: (17;12) (-3;2).
Итак, надо учесть, что искомое число должно на первом месте иметь цифру, отличную от нуля.
Какие цифры будут составлять искомое число? По условию сумма должна равняться Трем. Значит это могут быть только следующие варианты:
1. 3 0 0 0 0 0 1 вариант.
2. 2 1 0 0 0 0 или ["двигаем" единичку вправо]
2 0 1 0 0 0 или 5 вариантов.
3. 1 2 0 0 0 0 [поменяли единицу и двойку и теперь двойку двигаем вправо]
1 0 2 0 0 0 5 вариантов.
4. Следующие варианты будут состоять из единиц и нолей.
1 1 1 0 0 0 [ двигаем правую единичку вправо]
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1 4 варианта
[теперь двигаем вправо две единицы сразу]
1 0 1 1 0 0
1 0 0 1 1 0
1 0 0 0 1 1 3 варианта
[теперь рассмотрим положения, когда первая цифра единица зафиксирована на первом месте, а остальные две единицы занимают другие положения, не рассмотренные ранее]
1 0 0 1 0 1
1 0 1 0 0 1
1 0 1 0 1 0 3 варианта
ИТОГО: 21 вариант.