В г находим общий знаменатель - 42
Поэтому числители домножаем, и получаем 16 15
_ > _
42 42
В д тоже самое. общий знаменатель 80
Домножаем числители и получаем 36 35
_ > _
80 80
Плоскость α, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках А₁ и С₁ соответственно. Найдите отрезок А₁С₁, если АС = 18 см и АА₁:А₁В = 7:5.
7,5 см
Объяснение:
Если плоскость проходит через прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
Плоскость (АВС) проходит через прямую АС║α, значит плоскость (АВС) пересекает плоскость α по прямой, параллельной АС.
А₁С₁║АС.
Прямая, параллельная одной из сторон треугольника, отсекает от него треугольник, подобный данному, значит
ΔА₁ВС₁ ~ ΔАВС
По условию
то есть АА₁ составляет 7 частей, а А₁В - 5 частей, тогда АВ составляет 12 частей.
см
Вероятность того, что возьмут два недефектных и три дефектных изделия, равна отношению числа n благоприятствующих событий (сколькими можно взять два недефектных и три дефектных изделия) к числу N всех возможных событий (сколькими можно взять пять любых изделий).
Чтобы узнать, сколькими можно взять пять любых изделий, воспользуемся ф-лой из комбинаторики: число сочетаний C из n по k равно n!/k!(n-k)!, где n - кол-во имеющихся изделий, k - кол-во взятых изделий. С= 25!/5!(25-5)!= 20!*21*22*23*24*25/120*20!= 53130
Чтобы узнать, сколькими можно взять два недефектных изделия, воспользуемся той же ф-лой, где n - кол-во имеющихся недефектных изделий (25-6=19), k - кол-во взятых недефектных изделий. C=19!/2!(19-2)!=17!*18*19/1*2*17!=171
Чтобы узнать, сколькими можно взять три дефектных изделия, воспользуемся той же ф-лой, где n - кол-во имеющихся дефектных изделий, k - кол-во взятых дефектных изделий. C=6!/3!(6-3)!=3!*4*5*6/3!*1*2*3=20
Т.к. выбор недефектного изделия и выбор дефектного - события независимые, то по закону умножения в комбинаторике число сочетаний в независимых наборах умножается. С=171*20=3420 (число вариантов взятия двух недефектных и трех дефектных изделий)
Полученные значения подставим в формулу вероятности: P(A)=3420/53130=114/1771