17 голосов
Пошаговое объяснение:
24 + 29 + 37 = 90 (г) --- всего проголосовало
130 - 90 = 40 (г) будут еще голосовать
37 - 29 = 8 (г) разрыв Акмала со вторым кандидатом.
8 < 40, поэтому исход выборов зависит, от того, за кого проголосуют оставшиеся ученики.
При неблагоприятном для Акмала развитии событий второй кандидат, Хайрул, получит 8 голосов и разница исчезнет, у них будет равное число голосов.
40 - 8 = 32 (г) --- останется еще не проголосовавших, после уравнивания голосов за Акмала и Хайрула
Если даже мнение не проголосовавших 32 учеников теперь разделится пополам, то Акмал и Хайрул будут иметь равное число голосов, но:
32 : 2 = 16 (г) не дадут еще преимущества Акмалу
16 + 1 = 17 (г) уже обеспечат преимущество Акмалу
ответ: 17 голосов еще надо Акмалу.
Проверка. 37 + 17 = 54 (г) будет у Акмала
40 - 17 = 23 (г) --- останется у еще не проголосовавших для других кандидатов
29 + 23 = 52 (г) будет у Хайрула, даже если за Сухайми никто из оставшихся голосовать не будет.
54 > 52 --- Акмал победит.
Відповідь:
Исследуем функцию, заданную формулой: yx=x3-3x
Область определения: множество всех действительных чисел
Первая производная: y'x=3x2-3
x3-3x' =
=x3'-3x' =
=3x2-3x' =
=3x2-3•1 =
=3x2-3
Вторая производная: y''x=6x
Вторая производная это производная от первой производной.
3x2-3' =
=3x2'-3' =
=3x2'-0 =
=3x2' =
=32x =
=3•2x =
=3•2x =
=6x
Точки пересечения с осью x : x=-3;x=0;x=3
Для нахождения точек пересечения с осью абсцисс приравняем функцию к нулю.
x3-3x=0
Решаем уравнение методом разложения на множители.
xx2-3=0
решение исходного уравнения разбивается на отдельные случаи.
Случай 1 .
x=0
Случай 2 .
x2-3=0
Перенесем известные величины в правую часть уравнения.
x2=3
ответ этого случая: x=-3;x=3 .
ответ: x=-3;x=0;x=3 .
Точки пересечения с осью y : y=0
Пусть x=0
y0=03-3•0=0
Вертикальные асимптоты: нет
Горизонтальные асимптоты: нет .
Наклонные асимптоты: нет .
yx стремится к бесконечности при x стремящемся к бесконечности.
yxx стремится к бесконечности при x стремящемся к бесконечности.
Критические точки: x=-1;x=1
Для нахождения критических точек приравняем первую производную к нулю и решим полученное уравнение.
3x2-3=0
3x2=3
x2=3:3
x2=1
ответ: x=-1;x=1 .
Возможные точки перегиба: x=0
Для нахождения возможных точек перегиба приравняем вторую производную к нулю и решим полученное уравнение.
6x=0
x=0:6
x=0
ответ: x=0 .
Точки разрыва: нет
Симметрия относительно оси ординат: нет
Функция f(x) называется четной, если f(-x)=f(x).
yx-y-x =
=x3-3x--x3-3-x =
=x3-3x--x3+3-x =
=x3-3x+x3-3x =
=2x3+-6x =
=2x3-6x
2x3-6x≠0
y-x≠yx
Симметрия относительно начала координат: функция нечетная, график симметричен относительно начала координат.
Функция f(x) называется нечетной, если f(-x)=-f(x).
yx+y-x =
=x3-3x+-x3-3-x =
=x3-3x+-x3-3-x =
=x3-3x-x3+3x =
=x3-3x-x3+3x =
=0
y-x=-yx
Относительные экстремумы:
Проходя через точку минимума, производная функции меняет знак с (-) на (+).
Относительный минимум 1;-2 .
Проходя через точку максимума. производная функции меняет знак с (+) на (-).
Относительный максимум -1;2 .
Множество значений функции: множество всех действительных чисел
Наименьшее значение: нет
Наибольшее значение: нет
Детальніше - на -
Покрокове пояснення: