М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
foxheb57
foxheb57
08.08.2020 04:24 •  Математика

(x-450)-3540=4000:8 (1234+n)+2140=52741

👇
Ответ:
Вандализм
Вандализм
08.08.2020

Пошаговое объяснение:

(x-450)-3540=4000:80

(x-450)-3540=50

x-450=50+3540

x-450 =3590

x=3590+450

x=4040

(1234+n)+2140=52741

1234+n=52741-2140

1234+n=50601

n=50601-1234

n=49367

4,4(95 оценок)
Открыть все ответы
Ответ:
ayatyusubova1
ayatyusubova1
08.08.2020
  624/7= 89 -56     64    -  63       1 (остаток)     9163/5=1832 -5   41 -40     16     -15         13       -10           3 (остаток)   249/6=41 -24       9       -6       3 (остаток)   1224/4= 306 -12       24     -24           0   64/16=4 -64      0   165/52 = 3 -156       9 (остаток)
4,8(93 оценок)
Ответ:
вика3877
вика3877
08.08.2020
Пусть разложения вектора \overline{x} по векторам имеет вид:
        \overline{x}= \alpha\cdot \overline{p}+ \beta \cdot\overline{q}+\gamma \cdot \overline{r}

запишем это уравнение в векторной форме:

\{8;0;5\}= \alpha \cdot \{2;0;1\}+ \beta \cdot \{1;1;0\}+\gamma\cdot \{4;1;2\}\\ \\ \{8;0;5\}=\{2 \alpha ;0; \alpha \}+\{ \beta ; \beta ;0\}+\{4\gamma;\gamma;2\gamma\}

Чтобы найти сумму векторов, заданных своими координаты, необходимо просуммировать их соответствующие координаты

\{8;0;5\}=\{2 \alpha + \beta +4\gamma; \beta +\gamma; \alpha +2\gamma\}

Два вектора равны, если их соответствующие координаты равны, то есть, получаем следующую систему уравнений:
\displaystyle \begin{cases}
 & \text{ } 2 \alpha + \beta +4\gamma=8 \\ 
 & \text{ } \beta +\gamma=0 \\ 
 & \text{ } \alpha +2\gamma=5 
\end{cases}
Запишем эту систему в матричной форме и решим методом Гаусса.

\displaystyle \left(\begin{array}{ccc}2&1&4\\0&1&1\\1&0&2\end{array}\right \left|\begin{array}{ccc}8\\0\\5\end{array}\right)\sim\left(\begin{array}{ccc}1&0.5&2\\ 0&1&1\\ 1&0&2\end{array}\right \left|\begin{array}{ccc}4\\0\\5\end{array}\right)\sim\left(\begin{array}{ccc}1&0&1.5\\ 0&1&1\\0&-0.5&0\end{array}\right \left|\begin{array}{ccc}4\\0\\ 1\end{array}\right)\sim\\ \\ \\

\left(\begin{array}{ccc}1&0&1.5\\ 0&1&1\\ 0&0&0.5\end{array}\right \left|\begin{array}{ccc}4\\0\\1\end{array}\right)\sim\left(\begin{array}{ccc}1&0&1.5\\ 0&1&1\\0&0&1\end{array}\right \left|\begin{array}{ccc}4\\0\\2\end{array}\right)\sim\left(\begin{array}{ccc}1&0&0\\ 0&1&1\\ 0&0&1\end{array}\right \left|\begin{array}{ccc}1\\0\\2\end{array}\right)\sim

\left(\begin{array}{ccc}1&0&0\\0&1&0\\ 0&0&1\end{array}\right \left|\begin{array}{ccc}1\\-2\\2\end{array}\right)

Получаем решения данной системы уравнений с тремя переменными\begin{cases}
 & \text{ } \alpha =1 \\ 
 & \text{ } \beta =-2 \\ 
 & \text{ } \gamma=2 
\end{cases}



Следовательно, искомое разложение

                                                      \overline{x}= \overline{p}-2\overline{q}+2\overline{r}
4,4(90 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ