Половину пути принимаем за 1, тогда весь путь - 2. Пусть скорость первого автомобилиста равна х км/ч, тогда скорость второго на второй половине пути равна (х+9) км/ч. Первый был в пути 2/х часов, второй - 1/30 + 1/(х+9) часов. Зная, что их время одинаковое, составляем уравнение. 2/х = 1/30 + 1/ (х+9)
Приводим к общему знаменателю и приравниваем числители. 60(х+9) = х²+9х+30х х²+39х-60х-540=0 х²-21х-540=0 D=441+2106=2601 √D=51 х₁=(21-51)/2=-15 - не подходит по условию задачи х₂=(21+51)/2 = 36
I-я часть относится ко II-ой как "2 : 3", а II-я часть относится ко III-ей как "4 : 5". Домножим первое соотношение на "4", а второе на "3". а) 2 : 3 = (2*4) : (3*4) = 8 : 12 б) 4 : 5 = (4*3) : (5*3) = 12 : 15 Значит первые три части соотносятся как: 8 : 12 : 15. I-я часть относится ко II-ой и к III-ей как "8 : 12 : 15", а III-я часть относится ко IV-ой как "6 : 11". Домножим первое соотношение на "2", а второе на "5" в) 8 : 12 : 15 = (8*2) : (12*2) : (15*2) = 16 :24 : 30 г) 6 : 11 = (6*5) : (11*5) = 30 : 55 Значит общее соотношение 16 : 24 : 30 : 55. Проверим, сколько всего микрочастей получилось: 16 + 24 + 30 + 55 = 125 (микрочастей) Получается число 125 делится на такие части: I - 16; II - 24; III - 30; IV - 55.
ответ: 3 ч
Пошаговое объяснение:
сутки начинаются в 0 ч 0 мин
3 ч - 0 ч = 3 ч от начала суток
ответ: 3 ч