1) Соберём мнимые и вещественные части вместе: Мнимые и вещественные части д.б. равны, отсюда получаем систему уравнений, которую решаем:
2) Возведём мнимую единицу в соответствующую степень, учитывая, что:
Деление мнимых чисел производится умножением числителя и знаменателя на выражение сопряжённое со знаменателем.
Вещественная часть комплексного числа равна a = 1, мнимая часть тоже равна b = 1. Найдём модуль комплексного числа |z|:
Найдём аргумент комплексного числа, используя формулу: При этом надо учитывать следующие случаи: 1. если a>0, то 2. если a<0 и b>0, то 3. если a<0 и b<0, то
1) Соберём мнимые и вещественные части вместе: Мнимые и вещественные части д.б. равны, отсюда получаем систему уравнений, которую решаем:
2) Возведём мнимую единицу в соответствующую степень, учитывая, что:
Деление мнимых чисел производится умножением числителя и знаменателя на выражение сопряжённое со знаменателем.
Вещественная часть комплексного числа равна a = 1, мнимая часть тоже равна b = 1. Найдём модуль комплексного числа |z|:
Найдём аргумент комплексного числа, используя формулу: При этом надо учитывать следующие случаи: 1. если a>0, то 2. если a<0 и b>0, то 3. если a<0 и b<0, то
5,6х-32-0,4х+6=-39
5,2х=-39+26
5,2х=-13
х=-2,5
б)0,29x+0,78x-2,1x-0,4x=15,73
-1,43х=15,73
х=11