В принципе, достаточно нарисовать чертёж и измерить транспортиром нужный угол.
На чертеже изображен путь туристов A-B-C. Необходимо найти отмеченный вопросом угол, это и будет ответом.
Если хочется точно: Заметим, что угол 1 = 120°, угол 2 = 60° - по свойству накрест лежащих углов при параллельных прямых и секущей, угол 3 = 60°, т.к. он смежный с углом 60°. Поэтому угол ABC = 60° + 60° = 120°
По теореме косинусов AC = √(AB² + BC² - 2AB BC cos ABC) = 100√7 По теореме синусов sin ACB = 100 * sin ABC / AC = √3 / 2 / √7 = √(3/28); ACB = arcsin(√(3/28)) ≈ 19°. Тогда искомый угол 180° + 120° - 19° ≈ 280° (приближенно) или 300° - arcsin(√(3/28)) (точно).
Бетховен. 9 симфония В этом самом грандиозном из всех его инструментальных произведений композитор в последний раз возвратился к теме героической борьбы, которая красной нитью проходит через все его творчество. Симфония прозвучала как смелый вызов реакции, как напоминание о том, что передовые идеалы продолжают жить и в мрачные времена социального угнетения и насилия, что человек-боец не одинок и в объединении лежит путь к свободе. Никогда еще Бетховен не достигал подобной силы выражения оптимистического чувства, подобной революционной страстности.
На чертеже изображен путь туристов A-B-C. Необходимо найти отмеченный вопросом угол, это и будет ответом.
Если хочется точно:
Заметим, что угол 1 = 120°, угол 2 = 60° - по свойству накрест лежащих углов при параллельных прямых и секущей, угол 3 = 60°, т.к. он смежный с углом 60°.
Поэтому угол ABC = 60° + 60° = 120°
По теореме косинусов AC = √(AB² + BC² - 2AB BC cos ABC) = 100√7
По теореме синусов sin ACB = 100 * sin ABC / AC = √3 / 2 / √7 = √(3/28); ACB = arcsin(√(3/28)) ≈ 19°.
Тогда искомый угол 180° + 120° - 19° ≈ 280° (приближенно) или 300° - arcsin(√(3/28)) (точно).
ответ. 280°