4. Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если:
1) одна на 26 см больше другой, а проекции наклонных равны 12 см и 40 см;
2) наклонные относятся как 1 : 2, а проекции наклонных равны 1 см и 7 см.
1) Проведем SO - перпендикуляр к плоскости α, и обозначим SA = x, SB = y; x > y, так как AO > OB. Из двух прямоугольных тре- угольников SOA и SOB получаем:
2) Обозначим AS = х, тогда AS : SB = 1 : 2, то SB = 2x. SO — перпендикуляр. В прямоугольных треугольниках AOS и BOS имеем:
Пошаговое объяснение:
Система уравнений:
b₂b₄=36; b₁qb₁q³=36; b₁²q⁴=36; b₁=±√36/q⁴; b₁=±6/q²
b₃+b₅=8; b₁q²+b₁q⁴=8; b₁=8/(q²(1+q²))
-6/q²=8/(q²(1+q²)) ×q²/2
-3(1+q²)=4; -3-3q²=4; 3q²=-4-3; q²=-7/3 - корень не подходит, так как из отрицательного числа квадратный корень не извлекается.
6/q²=8/(q²(1+q²)) ×q²/2
3+3q²=4; 3q²=4-3; q²=1/3; q₁=-√(1/3); q₂=√(1/3)
b₁=6/(-√(1/3))²=6/(1/3)=6·3=18 - 1-й член геометрической прогрессии.
b₁=6/(√(1/3))²=6/(1/3)=6·3=18 - 1-й член геометрической прогрессии.
Сумма бесконечной геометрической прогрессии:
S(∞)=b₁/(1-q)
при q₁=-√(1/3): S(∞)=18/(1+√(1/3));
при q₂=√(1/3): S(∞)=18/(1-√(1/3)).