Прямой пропорциональностью называют взаимосвязь между двумя величинами, при которой увеличение одной из них влечет за собой увеличение другой во столько же раз.
Обратной пропорциональностью называют взаимосвязь между двумя величинами, при которой увеличение одной из них влечет за собой уменьшение другой во столько же раз.
Пошаговое объяснение:
Свойства:
Две величины прямо пропорциональны, если при увеличении одной из них увеличивается и вторая, или при уменьшении одной уменьшается и вторая.
Две величины обратно пропорциональны, если при увеличении одной из них вторая уменьшается, или при уменьшении одной вторая увеличивается.
1) Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора АВ
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 9-5; Y = 3-(-1); Z = -6-4
АВ(4;4;-10), АС(2;11;-18), АД(0;2;-7).
2) Угол а между векторами АВ и АС равен.
Модули: АВ =√(16 + 16 + 100) = √132 = 2√33.
АС = √(4 + 121 + 324) = √449
cos a = (4*2 + 4*11 + (-10)*(-18))/(√132*√449) = (8 + 44 + 180)/(59268) = 232/243,4502 = 0,952967.
а = arc cos 0,952967 = 0,307917 радиан = 17,642339 градуса.
3) Проекция вектора АД на вектор АВ.
Решение: Пр ba = (a · b)/|b|.
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bz = 0 · 4 + 2 · 4 + (-7) · (-10) = 0 + 8 + 70 = 78
Модуль вектора b = АВ определён и равен √132 = 2√33.
Пр ba = 78/(2√33) = 13√33 / 11 ≈ 6.78903.
4) Площадь грани АВС равна половине модуля векторного произведения векторов АВ и АС.
Векторное произведение:
i j k
4 4 -10
2 11 -18
= i(4(-18)-11(-10)) - j(4(-18)-2(-10)) + k(4*11-2*4) = 38i + 52j + 36k.
S = (1/2)√√(38² + 52² + 36²) = (1/2)√(1444 + 2704 + 1296) = √5444 ≈ 36,89173.
5) Объем пирамиды АВСД равен (1/6) смешанного произведения векторов (АВ х АС) х АД.
(АВ х АС) = (38; 52; 36), АД(0;2;-7) - определено выше.
(АВ х АС) х АД = |38*0 + 52*2 + 36*(-7)| = 148
S = (1/6)*148 = 24,6667.
Х-115%
Х=780*15:100=117 га