Даны точки A(-2; 1; 1), B(0; 2; -1), C(1; 3; 0) и D(2; 1; 3).
Вектор АВ = (0-(-2); 2-1; -1-1) = (2; 1; -2), модуль равен √9 = 3.
Вектор CD = (2-1; 1-3; 3-0) = (1; -2; 3), модуль равен √14.
Косинус угла между ними равен:
cos (AB_CD) = (2*1+1*(-2)+(-2)*3)/(3√14) = -6/(3√14) = -2/√14 = -√14/7.
Угол между векторами — угол между направлениями этих векторов (наименьший угол). По определению, угол между двумя векторами находится в промежутке [0°; 180°].
То есть, угол может быть тупым при отрицательном косинусе его.
Угол равен arccos(-√14/7) = arccos(-0,534522484) = 2,134738968 радиан или 122,3115332 градуса.
2) 2,4b - 46,3 + 1,7 - 8b = -5,6b - 44,6
3) 6,5c + 30 - 6,5c - 71 = -41
4) 2,7d - 7,5- 5d + 7,5 = - 2,3d