Поскольку при выкладывании по 8 и по 9 плиток в ряд прямоугольников не получается, а остаются неполные ряды, то количество плиток делится на 8 и на 9 с остатками.
Остаток от деления любого числа на 8 не может быть больше 7. По условию это число на 6 больше, чем остаток от деления на 9. Но остаток от деления на 9 тоже не равен нулю. Значит, остаток от деления на 8 может быть равен только 7. А остаток от деления на 9 равен 1.
Общее количество плиток меньше 100, иначе их хватило бы на квадратную площадку со стороной в 10 плиток. Среди чисел меньше 100 надо найти такое, которое делится на 8 с остатком 7 и на 9 с остатком 1. Проверив все числа в пределах 100, делящиеся на 9 с остатком 1, получим ответ: 55 плиток.
ответ: 55.
Пошаговое объяснение:
Число 832 делится, кроме 1 и 832, на 2 (оканчивается на 2 - признак делимости на 2) - значит, оно составное.
Число 7053 делится, кроме 1 и 7053, на 3 (сумма его цифр 7 + 0 + 5 + 3 = 15 делится на 3 - признак делимости на 3), следовательно, оно составное.