М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Хфк
Хфк
25.01.2021 17:11 •  Математика

Язык ,9 класс ergänze die sätze mit passenden präpositionen und artikeln. 1) was hast du am samstag vor? - ich gehe konzert. 2) wo warst du gestern? - wir waren zirkus. 3) gehst du museum oft? - nein, nicht sehr oft. 4) möchtest du am sonntag disko gehen? - nein, ich fahre mit den eltern zu meiner oma. 5) ist tanja da? - nein, sie ist mit dem hund park gegangen. 6) ich möchte galerie gehen. kommst du mit? 7) ich habe hunger. gehen wir mal café! 8) wart ihr kino? - ja, wir haben einen neuen film gesehen.

👇
Ответ:
Aliiev19
Aliiev19
25.01.2021
1) Was hast du am Samstag vor? - Ich gehe zum Konzert.
2) Wo warst du gestern? - Wir waren im Zirkus.
3) Gehst du ins Museum oft? - Nein, nicht sehr oft.
4) Möchtest du am Sonntag in die Disko gehen? - Nein, ich fahre mit den Eltern zu meiner Oma.
5) Ist Tanja da? - Nein, sie ist mit dem Hund in den Park gegangen.
6) Ich möchte in die Galerie gehen. Kommst du mit?
7) Ich habe Hunger. Gehen wir mal ins Café!
8) Wart ihr im Kino? - Ja, wir haben einen neuen Film gesehen.
4,4(17 оценок)
Открыть все ответы
Ответ:
KarinaRihter
KarinaRihter
25.01.2021
a) это дифференциальное уравнение первого порядка, разрешенной относительной производной. Также это уравнение с разделяющимися переменными.
Переходя к определению дифференциала
\frac{dy}{dx} =- \frac{y}{2x}

\frac{2dy}{y} =- \frac{1}{x} - уравнение с разделёнными переменными

Интегрируя обе части уравнения, получаем

\int \frac{2dy}{y} dx=-\int \frac{1}{x}dx\\ \\ \ln y^2=\ln C-\ln|x|\\ \\ y^2= \frac{C}{x}

Получили общий интеграл.

Найдем решение задачи Коши
2^2= \frac{C}{1} \\C=4

\boxed{y^2= \frac{4}{x} } - частный интеграл.

б) y''-4y'+5y=10x+2
Классификация: Дифференциальное уравнение второго порядка с постоянными коэффициентами, относится к первому виду со специальной правой части.

Нужно найти: уо.н. = уо.о. + уч.н., где уо.о. - общее решение однородного уравнения, уч.н. - частное решением неоднородного уравнения.

1) Найдем общее решение соответствующего однородного уравнения
y''-4y'+5y=0
Перейдем к характеристическому уравнению, пользуясь методом Эйлера.
Пусть y=e^{kx}, тогда получаем
k^2-4k+5=0\\ D=b^2-4ac=(-4)^2-4\cdot1\cdot 5=16-20=-4\\ \sqrt{D} =2i\\ k_{1,2}=2\pm i

Тогда общее решением однородного уравнения примет вид:
y_{o.o.}=e^{2x}(C_1\cos x+C_2\sin x)

2) Нахождение частного решения.
Рассмотрим функцию f(x)=10x+2=e^{0x}(10x+2)
\alpha=0;\,\, P_n(x)=10x+2\,\,\, \Rightarrow\,\,\,\,\, n=1

Сравнивая \alpha с корнями характеристического уравнения и принимаем во внимания что n=1, то частное решением будем искать в виде:

yч.н. = Ax+B

Предварительно вычислим 1 и 2 производные функции
y'=A\\ y''=0

Подставим в исходное уравнение

0-4\cdot A+5\cdot (Ax+B)=10x+2\\ -4A+5Ax+5B=10x+2\\ 5Ax+5B-4A=10x+2

Приравниваем коэффициенты при степени х

\displaystyle \left \{ {{5A=10} \atop {5B-4A=2}} \right. \Rightarrow \left \{ {{A=2} \atop {B=2}} \right.

Частное решение будет иметь вид: уч.н. = 2х + 2

Тогда общее решение неоднородного уравнения:

уо.н. = e^{2x}(C_1\cos x+C_2\sin x)+2x+2

Найдем решение задачи Коши

y'=2e^{2x}(C_1\cos x+C_2\sin x)+e^{2x}(-C_1\sin x+C_2\cos x)+2=\\ \\ =e^{2x}(\cos x(2C_1+C_2)+\sin x(2C_2-C_1))+2

\displaystyle \left \{ {{2C_1+C_2+2=6} \atop {C_1+2=10}} \right. \Rightarrow \left \{ {{C_2=-12} \atop {C_1=8}} \right.

Частное решение: уo.н. = e^{2x}(8\cos x-12\sin x)+2x+2
4,8(17 оценок)
Ответ:
ktoya2
ktoya2
25.01.2021
a) это дифференциальное уравнение первого порядка, разрешенной относительной производной. Также это уравнение с разделяющимися переменными.
Переходя к определению дифференциала
\frac{dy}{dx} =- \frac{y}{2x}

\frac{2dy}{y} =- \frac{1}{x} - уравнение с разделёнными переменными

Интегрируя обе части уравнения, получаем

\int \frac{2dy}{y} dx=-\int \frac{1}{x}dx\\ \\ \ln y^2=\ln C-\ln|x|\\ \\ y^2= \frac{C}{x}

Получили общий интеграл.

Найдем решение задачи Коши
2^2= \frac{C}{1} \\C=4

\boxed{y^2= \frac{4}{x} } - частный интеграл.

б) y''-4y'+5y=10x+2
Классификация: Дифференциальное уравнение второго порядка с постоянными коэффициентами, относится к первому виду со специальной правой части.

Нужно найти: уо.н. = уо.о. + уч.н., где уо.о. - общее решение однородного уравнения, уч.н. - частное решением неоднородного уравнения.

1) Найдем общее решение соответствующего однородного уравнения
y''-4y'+5y=0
Перейдем к характеристическому уравнению, пользуясь методом Эйлера.
Пусть y=e^{kx}, тогда получаем
k^2-4k+5=0\\ D=b^2-4ac=(-4)^2-4\cdot1\cdot 5=16-20=-4\\ \sqrt{D} =2i\\ k_{1,2}=2\pm i

Тогда общее решением однородного уравнения примет вид:
y_{o.o.}=e^{2x}(C_1\cos x+C_2\sin x)

2) Нахождение частного решения.
Рассмотрим функцию f(x)=10x+2=e^{0x}(10x+2)
\alpha=0;\,\, P_n(x)=10x+2\,\,\, \Rightarrow\,\,\,\,\, n=1

Сравнивая \alpha с корнями характеристического уравнения и принимаем во внимания что n=1, то частное решением будем искать в виде:

yч.н. = Ax+B

Предварительно вычислим 1 и 2 производные функции
y'=A\\ y''=0

Подставим в исходное уравнение

0-4\cdot A+5\cdot (Ax+B)=10x+2\\ -4A+5Ax+5B=10x+2\\ 5Ax+5B-4A=10x+2

Приравниваем коэффициенты при степени х

\displaystyle \left \{ {{5A=10} \atop {5B-4A=2}} \right. \Rightarrow \left \{ {{A=2} \atop {B=2}} \right.

Частное решение будет иметь вид: уч.н. = 2х + 2

Тогда общее решение неоднородного уравнения:

уо.н. = e^{2x}(C_1\cos x+C_2\sin x)+2x+2

Найдем решение задачи Коши

y'=2e^{2x}(C_1\cos x+C_2\sin x)+e^{2x}(-C_1\sin x+C_2\cos x)+2=\\ \\ =e^{2x}(\cos x(2C_1+C_2)+\sin x(2C_2-C_1))+2

\displaystyle \left \{ {{2C_1+C_2+2=6} \atop {C_1+2=10}} \right. \Rightarrow \left \{ {{C_2=-12} \atop {C_1=8}} \right.

Частное решение: уo.н. = e^{2x}(8\cos x-12\sin x)+2x+2
4,4(88 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ