АВСД - прямоугольник ⇒ ∠А=∠В=∠С=∠Д=90° .
Так как МА⊥ пл. АВСД ⇒ МА ⊥АВ , МА⊥АД , МА⊥АС.
Тогда треугольники АВМ , АДМ, АСМ, АДС, АДВ - прямоугольные , и к ним можно применить теорему Пифагора.
1)\; \; MB=\sqrt{AB^2+AM^2}=\sqrt{3^2+1^2}=\sqrt{10}2)\; \; MD=\sqrt{AD^2+AM^2}=\sqrt{4^2+1^2}=\sqrt{17}3)\; \; AC=\sqrt{AD^2+CD^2}=\sqrt{4^2+3^2}=54)\; \; BD=\sqrt{AD^2+AB^2}=\sqrt{4^2+3^2}=5\; ,\; \; AC=BD\; .
5)\; \; CM=\sqrt{AC^2+AM^2}=\sqrt{5^2+1^2}=\sqrt{26}6)\; \; S(MAC)=\frac{1}{2}\cdot AC\cdot AM=\frac{1}{2}\cdot 5\cdot 1=2,5
Пошаговое объяснение:
АВСД - прямоугольник ⇒ ∠А=∠В=∠С=∠Д=90° .
Так как МА⊥ пл. АВСД ⇒ МА ⊥АВ , МА⊥АД , МА⊥АС.
Тогда треугольники АВМ , АДМ, АСМ, АДС, АДВ - прямоугольные , и к ним можно применить теорему Пифагора.
1)\; \; MB=\sqrt{AB^2+AM^2}=\sqrt{3^2+1^2}=\sqrt{10}2)\; \; MD=\sqrt{AD^2+AM^2}=\sqrt{4^2+1^2}=\sqrt{17}3)\; \; AC=\sqrt{AD^2+CD^2}=\sqrt{4^2+3^2}=54)\; \; BD=\sqrt{AD^2+AB^2}=\sqrt{4^2+3^2}=5\; ,\; \; AC=BD\; .
5)\; \; CM=\sqrt{AC^2+AM^2}=\sqrt{5^2+1^2}=\sqrt{26}6)\; \; S(MAC)=\frac{1}{2}\cdot AC\cdot AM=\frac{1}{2}\cdot 5\cdot 1=2,5
Пошаговое объяснение:
Теперь составим функцию,которая определяет количество черных бактерий в зависимости от секунд k:
после первой секунды k=1: (100-b(k-1))*2=2*100-2*b(1-1)=2*100-2*b(0)=
2*100-2; где b(k-1) - это количество белых после предыдущей секунды.
После второй секунды k=2: ((2*100-2)-b(1))*2=4*100-4-2*2²=4*100-12=
2² *100-3*2²
После 3-х секунд k=3: ((4*100-12)-b(2))*2=((4*100-12)-16)*2=
8*100-56=2³ *100-7*2³ и т.д.
Т.е. количество черных-это функция:
f(k)=100*2^k -((2^k) -1)*2^k=(101-2^k)*2^k. где k-секунды.
найдем, начиная с какой секунды f(k)<0, т.е. все чёрные бактерии будут уничтожены:
(101-2^k)*2^k<0, 101-2^k<0, 101<2^k, k>6, 2^6=64, 2^7=128
Значит на 7-й секунде все чёрные бактерии будут уничтожены.