Heads and Tails ”not in vain won the nomination for the best TV shows, since the idea itself is unique, not only in terms of tourism, but also in terms of the entire meaning of the program, since it thinks not only about the rich life of travel. It reveals all the romanticism of tourism, and the accessibility of admiration for everything that nature and God himself have created, revealing the unique sides of cities, peoples and nations with their customs, which would hardly have been known without traveling on the TV screen. Changing the presenters, the author of the program enriches the story, in which each storyteller makes his own contribution and presents the delights of the world according to his vision.
Пошаговое объяснение:
) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых. ABCD — параллелограмм, если AB ∥ CD, AD ∥ BC. Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников. Например, это могут быть пары треугольников 1) ABC и CDA, 2) BCD и DAB, 3) AOD и COB, 4) AOB и COD. 2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам. Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD. 3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны. Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD). Для этого можно доказать равенство одной из тех же пар треугольников. 4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны. Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD. Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB. Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать. Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам
так вроде