Понять, что такое круги Эйлера, можно, решив несколько задач. Каждый круг Эйлера обозначает множество объектов (то есть набор каких-либо объектов, заданный так, что про вообще любой объект можно однозначно определить, есть он в этом наборе, или нет), а точка — один объект. Точка рисуется внутри круга, если объект принадлежит этому множеству, а иначе — снаружи круга.
В случае, если объект принадлежит сразу нескольким множествам (то есть лежит в пересечении множеств), обозначающая его точка находится в пересечении соответствующих этим множествам кругов (то есть в каждом из них).
Если объект принадлежит хотя бы одному из нескольких множеств, то говорят, что он принадлежит их объединению. Применительно к кругам Эйлера это означает, что точка лежит хотя бы в одном из кругов, соответствующих этим множествам.
Объект лежит в разности двух множеств, если он лежит в первом из них, но не лежит во втором.
Чтобы не рисовать точки, часто просто пишут их количество в соответствующих частях кругов.
Вероятность вычисляется по формуле [число благоприятных исходов]/[число всех исходов].
Когда кость бросается дважды, возможно 6*6=36 исходов - оба раза может выпасть любое число от 1 до 6. Обратите внимание, что нам важно, какое число выпало первым, а какое вторым - например, (2,1) и (1,2) - это два разных исхода. Для события А существует 3 благоприятных исхода - (5,6), (6,5), (6,6). Тогда P(A)=3/36=1/12. Для события Б существует 36/2=18 благоприятных исходов - (1,1), (1,3), (1,5), (2,2), (2,4), (2,6), ..., (6,2), (6,4), (6,6). Таким образом, вероятность события Б равна 18/36=1/2.