М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dashaloh000
dashaloh000
31.07.2021 12:52 •  Математика

Кот матроскин отправил письмо из деревни простоквашино. 49 16 32 16 24 43 39 44 48 44 48 43 21 48 21 48 ! 56 10 48 11 21 16 32 16 29 11 16 32 16 41 16 49 43 10 24 32 48 49 56 11 . 41 16 88 21 48 88 32 16 11 41 43 10 расшифруйте письмо. какая температура в деревне? если кому то несложно объясните как расшифровывать по методу "золотой жук",у меня скоро конкурс а я немогу разобраться.рассказ прочитала и ничего непоняла

👇
Ответ:
polarusam
polarusam
31.07.2021
Д о р о г и е п а п а и м а м а !
у н а с м о р о з с о р о к о д и н г р а д у с .
к о т м а т р о с к и н
4,8(53 оценок)
Открыть все ответы
Ответ:
катерина424
катерина424
31.07.2021

ответ: (e-1)/3

Пошаговое объяснение:

Найдём неопределённый интеграл функции e^(x^3)*x^2 чтобы использовать фундаментальную теорему исчисления.

                                            \int{e^{x^{3} }x^2 } \, dx.

Пусть u=x^3, тогда x=\sqrt[3]{u}.

                              du = 3x^2dx \\ dx = \frac{du}{3x^2} = \frac{du}{3(\sqrt[3]{u} )^{2}} = \frac{du}{3u^{2/3}}

Делаем подстановку в наше изначальное выражение:

                                      \int{e^{x^{3}}x^2dx}=\int{e^{u}(\sqrt[3]{u})^{2}\frac{du}{3u^{2/3}} } = \int{ e^uu^{2/3}\frac{du}{3u^{2/3}} }

Здесь u^{2/3} сокращаются и мы имеем \int{e^u\frac{du}{3}}. Выносим \frac{1}{3} за интеграл: \frac{1}{3} \int{e^u} \, du. Теперь мы имеем знакомый интеграл, который равняется \frac{1}{3} (e^{u}+C), тоже самое что \frac{1}{3} e^u+C. Подставляем u=x^3 и имеем \frac{1}{3}e^{x^3}+C. Используем фундаментальную теорему исчисления:

\int\limits^1_0 {e^{x^3} x^2} = \frac{1}{3} e^{x^3}]_0^1=\frac{1}{3} e^{1^3}-\frac{1}{3} e^{0^3}=\frac{1}{3} e^1-\frac{1}{3} e^0=\frac{1}{3} e-\frac{1}{3}=\frac{e-1}{3}

                 

4,4(87 оценок)
Ответ:

ответ: (e-1)/3

Пошаговое объяснение:

Найдём неопределённый интеграл функции e^(x^3)*x^2 чтобы использовать фундаментальную теорему исчисления.

                                            \int{e^{x^{3} }x^2 } \, dx.

Пусть u=x^3, тогда x=\sqrt[3]{u}.

                              du = 3x^2dx \\ dx = \frac{du}{3x^2} = \frac{du}{3(\sqrt[3]{u} )^{2}} = \frac{du}{3u^{2/3}}

Делаем подстановку в наше изначальное выражение:

                                      \int{e^{x^{3}}x^2dx}=\int{e^{u}(\sqrt[3]{u})^{2}\frac{du}{3u^{2/3}} } = \int{ e^uu^{2/3}\frac{du}{3u^{2/3}} }

Здесь u^{2/3} сокращаются и мы имеем \int{e^u\frac{du}{3}}. Выносим \frac{1}{3} за интеграл: \frac{1}{3} \int{e^u} \, du. Теперь мы имеем знакомый интеграл, который равняется \frac{1}{3} (e^{u}+C), тоже самое что \frac{1}{3} e^u+C. Подставляем u=x^3 и имеем \frac{1}{3}e^{x^3}+C. Используем фундаментальную теорему исчисления:

\int\limits^1_0 {e^{x^3} x^2} = \frac{1}{3} e^{x^3}]_0^1=\frac{1}{3} e^{1^3}-\frac{1}{3} e^{0^3}=\frac{1}{3} e^1-\frac{1}{3} e^0=\frac{1}{3} e-\frac{1}{3}=\frac{e-1}{3}

                 

4,6(69 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ