Пошаговое объяснение:
Уравнения с разделяющимися переменными
Пусть в выражении f(x,y)=f1(x)f2(y), то есть уравнение может быть представлено в виде y'=f1(x)f2(y) или в эквивалентной форме:
M1(x)M2(y)dx + N1(x)N2(y)dy = 0.
Эти уравнения называются дифференциальными уравнениями с разделяющимися переменными.
Если f2≠0 для , то, с учетом того, что y'=dy/dx, получаем откуда, с учетом инвариантности дифференциала первого порядка, имеем .
Аналогично, для уравнения во второй форме, если получаем или, интегрируя обе части по x, .
НАЗНАЧЕНИЕ СЕРВИСА. Онлайн калькулятор можно использовать для проверки решения дифференциальных уравнений с разделяющимися переменными.
x*y*dx + (x+1)*dy
=
0
Решить
ПРИМЕР 1. Для дифференциального уравнения y' = ex+y имеем y' = exey, откуда e-ydy = exdx или, интегрируя обе части по x, e-y = ex + C и, наконец, y = -ln(-ex + C).
ПРИМЕР 2. Решить уравнение xydx + (x+1)dy = 0. В предположении, что получаем или, интегрируя, lny = -x + ln(x+1) + lnC, отсюда y = C(x+1)e-x. Решение y = 0 получается при C = 0, а решение x = 1 не содержится в нем. Таким образом, решение уравнения y = C(x+1)e-x,
Начнем с ситуации, где 1,5 м 4 лежат на положительный участках соответствующих осей: тогда при х=0, н=1,5, значит b=1,5, а при у=0, х=4, значит k=-3/8, ур-е имеет вид: y=-3/8*x+1,5
Теперь рассмотрим случай, когда участок х - отрицательный, а у - положительный. для х=0, у=1,5 , b=1,5, а для у=0, х=-4, значит k=3/8, ур-е имеет вид: у=3/8*x+1,5
Точно так же для других сторон мы получим: у=3/8*x-1,5 и y=-3/8*x-1,5
Теперь с расстоянием между сторонами. Оно будет равно двум высотам, проведенным из вершины прямоугольного треугольника, содержащего стороны 1,5 и 4 . Высота(обозначим ее а) равна а=1,5*4/√1,5²+4²=6/√18,25, значит расстояние равно 2а=12√18,25