Пошаговое объяснение:
Вводим в рассмотрение события –гипотезы:
Н1–''выбрана винтовка с оптическим прицелом''
Н2–''выбрана винтовка без оптического прицела''
р(Н1)=3/10=0,3
р(H2)=7/10=0,7
Cобытие А – '' стрелок поразит мишень''
По условию вероятность события А при выстреле из винтовки с оптическим прицелом, равна 0,85;
p(A/H1)=0,85
Вероятность события А при выстреле из винтовки без оптического прицела эта вероятность равна 0,7
p(A/H2)=0,7
По формуле полной вероятности
р(А)=р(Н1)·р(А/Н1)+р(Н2)·р(А/Н2)=
=0,3·0,85+0,7·0,7=
=0,255+0,49=0,745
p(Н1/А)·р(А)=р(Н1)·р(А/Н1) ⇒
p(Н1/А)=0,255/0,745 ≈ 0,34
и
p(Н2/А)=0,49/0,745 ≈ 0,66
вероятнее, что стрелок стрелял из винтовки без оптического прицела
Пошаговое объяснение:
1. Точный расчет по формуле Ньютона-Лейбница.
Интеграл - площадь под графиком функции вычисляем по формуле:
Вычисляем на границах интегрирования.
F(3) = 64/5, F(1) = 8/5*√2.
И сам определенный интеграл:
F = F(3) - F(1) = (64-8√2)/5 = 10.5373 - точное значение - ответ.
2. Приближенное вычисление по формулам прямоугольников.
Площадь фигуры разбивается на прямоугольники ширина которых зависит от числа точек расчёта - h = (b-a)/n, а высота равна значению функции.
Если за высоту брать значение с левой стороны отрезка получим формулу левых прямоугольников:
Fлев ≈ (b -a)/n*[f(x₀)+f(x₁)+...+f(xₙ-₁)] - и результат будет меньше точного значения.
Fправ ≈ (b -a)/n*[f(x₁)+f(x₂)+...+f(xₙ)] - больше точного значения.
Расчет и схема расчета приведена в приложении.
Для n = 10, получаем значение h = (3-1)/10 = 0.2.
Получили два значения интеграла:
Fлев = 10,023 и Fправ = 11,057.
Абсолютную погрешность вычисления находим по формуле:
Δ = (Fлев - F) = 10.023 - 10.5373 = - 0.514 и
Δ = (Fправ - F) = 11.057 - 10.5373 = 0.520
Абсолютная погрешность Δ = ± 0,52 - ответ.
Относительная погрешность вычисляется в процентах:
δ = Δ/F = 0,52 : 10,5373 = 0.05 = 5% - относительная погрешность - ответ.
объясняю: дробь это когда мы что нибудь делим на части
то есть знаменатель это на сколько частей поделили а числитель сколько взяли
с мы не можем что нибудь поделить на ноль частей