Предположим, что ребро куба было 2 см. Тогда его объём был 8 см³. Увеличиваем в 2 раза длину ребра, то есть оно будет 4 см. А объём при этом станет 64 см³. Он увеличился у 8 раз, потому что 64/8= 8. Аналогично будет при любых значениях длины ребра.
Теперь увеличим длину ребра в 3 раза. Предположим ребро 3 см. Тогда объём такого куба 27 см³. После увеличения ребро станет 9 см, а объём - 729 см³; То есть объём увеличился у 27 раз.
Так же само уменьшаеться, в те же разы.
Теперь к задаче Переведём всё в дм: 1 м= 10 дм; 70 см = 7 дм; 50 см= 5 дм; Тогда объём этого бака 10* 5* 7= 350 дм³; Маса всей воды в этом баке: 350* 1= 350 (кг).
В скобки взяты одинаковые части двух последовательностей. При вычитании произведений цифр каждого числа первой последовательности из произведений цифр этого же числа второй последовательности, мы получим нуль.
Осталось перемножить все цифры оставшихся чисел первой и второй последовательности и найти разность. Произведение цифр каждого числа первой последовательности 2017, 2018, ..., 2029, 2030 равно нулю. Также равно нулю произведение цифр всех оставшихся чисел второй последовательности - 20180000, 20180001, ... , 20180013. Произведения цифр чисел равны нулю, т.к. в каждое число входит цифра 0. Следовательно, сумма всех чисел, выписанных в тетрадь Фоксом, равно нулю.