Такое движение - это арифметическая прогрессия (каждый день улитка проползает на одно и то же расстояние больше). Сумма n членов арифметической прогрессии находится по формуле S = (a1 + an)/2 * n Здесь a1 - первый член прогрессии (расстояние,которое улитка проползла за первый день) an - последний (n - ый член прогрессии) - расстояние в последний день n - число суммируемых членов,т.е. число дней,которые ползла улитка (это то,что нужно найти) Из формулы выразим n = 2S / (a1+an) По условию S = 20м (общее расстояние,т.е.сумма всех расстояний,которые проползала улитка) a1+an = 8 (первый и последний день в сумме) Тогда S = 2*20/8 = 40/8 = 5 ответ:улитка ползла 5 дней.
Как известно, аликвотными (единичными) дробями в математике принято называть дроби вида 1/x, т.е. такие дроби, в которых числитель равен единице, а знаменатель - любое натуральное число. Сталкиваясь с задачей разложения аликвотных дробей в виде суммы меньших аликвотных дробей была выведена закономерность, которую можно представить в виде формулы 1/x = 1/(x+1) + 1/x(x+1), с которой поставленная задача решается так:1/2 = 1/(2+1) + 1/2(2+1) = 1/3+1/6;1/4 = 1/(4+1) + 1/4(4+1) = 1/5+1/20;1/6 = 1/(6+1) + 1/6(6+1) = 1/7+1/42;1/8 = 1/(8+1) + 1/8(8+1) = 1/9+1/72;1/10 = 1/(10+1) + 1/10(10+1) = 1/11+1/110.
41+х=50
х=50-41
х=9