Пусть X - скорость течения реки, она же - скорость движения плота. Тогда по условию скорость катера: - в стоячей воде - 3X, - при движении против течения - 3Х-Х=2Х, - при движении по течению - 3Х+Х=4Х. - скорость сближения при движении плота и катера навстречу друг другу - Х+2Х. Если принять расстояние между пунктами за единицу, то время движения катера от А до B составит t1=1/(Х+3Х)=1/4Х. За это время плот пройдет расстояние S1п=Х*t1=X*(1/4Х)=1/4. Расстояние, которое должны будут пройти плот и катер до встречи после разворота катера, соответственно, составит Sост=1-S1п=1-1/4=3/4. Время, за которое преодолеют это расстояние катер и плот до встречи t2=Sост/(Х+2Х)=(3/4)/(3Х)=1/4Х. Соответственно плот за это время пройдет расстояние S2п=Х*t2=X*(1/4Х)=1/4. Общее расстояние, пройденное плотом S=S1п+S2п=1/4 +1/4 =1/2
Давайте занумеруем дни начиная с нуля -- пусть понедельник, в который ребята встретились, будет 0-м днём. Все дни, в которые ходит Петя, делятся на 3, Вася - на 4, Коля - на 5. Нам нужно число, которое делится и на три, и на четыре, и на пять. Или, проще говоря, их наибольший общее кратное. Так как 3, 4 и 5 попарно взаимно просты, то их НОК равен произведению. таким образом, ребята будут встречаться раз в дней. Нам нужен день недели, то есть остаток от деления этого числа на 7, он равен 4. Поскольку нулевой день есть понедельник, то четвёртый -- пятница. Сложно эту задачку объяснять. Если чего, милости в комменты.