Пусть треугольник будет ABC, и AB=BC=4см, AC=2см. Сделаем дополнительное построение - проведем высоту BD. Так как треугольник ABC является равнобедренным, а высота BD проведена к основанию этого равнобедренного треугольника, то она будет являться также и медианой треугольника, а, следовательно, (см). Найдем BD по теореме Пифагора из треугольника ABD:
(см)
Известно, что площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты. Воспользуемся этим фактом для вычисления площади треугольника. Для нашего случая площадь треугольника ABC будет равна:
Тметим на координатной прямой точки с координатами -3 и 2. если точка расположена между ними, то ей соответствует число, которое больше -3 и меньше 2. верно и обратное: если число х удовлетворяет условию -3< x< 2 , то оно изображается точкой, лежащей между точками с координатами -3 и 2. множество всех чисел, удовлетворяющих условию -3< x< 2, называется числовым промежутком или просто промежутком от -3 до 2 и обозначается так: (-3; 2). на рисунках изображены множество чисел х, для которых выполняется неравенство х< 10 и х≤10. эти множества представляют собой промежутки, обозначаемые соответственно (-∞; 10) и (-∞; 10]. читается так: число х принадлежит промежутку от минус бесконечности (-∞) до 10 (х< 10) и число х принадлежит промежутку от минус бесконечности (-∞) до 10, включая число 10 (х≤10). знак равенства в неравенстве обозначается квадратной скобкой в указании промежутка. множество, составляющее общую часть некоторых множеств а и в, называют пересечением этих множеств и обозначают а∩в. промежуток [3; 5] является пересечением промежутков [-1; 5] и [3; 7]. это можно записать так: [-1; 5]∩[3; 7]=[3; 5].промежутки [0; 4] и [6; 10] не имеют общих элементов. если множество не имеет общих элементов, то говорят, что их пересечение пусто. значит, пересечение промежутков [0; 4]∩[6; 10]=0. объединение числовых промежутков каждое число из промежутка [1; 7] принадлежит хотя бы одному из промежутков [1; 5] и [3; 7], то есть, либо промежутку [1; 5], либо промежутку [3; 7], либо им обоим. множество, состоящее из элементов, принадлежащих хотя бы одному из множеств а и в, называют объединением этих множеств обозначают . промежуток [1; 7] является объединением промежутков [1; 5] и [3; 7]. это можно записать так: заметим, что объединение промежутков не всегда представляет собой промежуток, например множество не является промежутком. 1. числовым промежутком называется множество всех чисел, удовлетворяющих неравенству.2. знак равенства в неравенстве обозначается квадратной скобкой в указании промежутка.3. множество, составляющее общую часть некоторых множеств а и в, называют пересечением этих множеств и обозначают а∩в. 4. множество, состоящее из элементов, принадлежащих хотя бы одному из множеств а и в, называют объединением этих множеств обозначают .
Всего вариантов вынуть из первой урны 3 шара без учёта их порядка – это 10*9*8/6, поскольку любую выборку из 3 шаров можно перемешать шестью Т.е. всего вариантов вынуть 3 шара из первой урны – это
При вынимании всех белых шаров, первый можно вынуть 6-тью второй – 5-тью и третий – 4-мя, с учётом того, что все их можно перемешать 6-тью всего 3 белых шара можно вынуть что составляет 20/120 = 1/6 всех исходов изъятия шаров из первой урны, во второй при этом образуется 6 из 8 белых шаров. Итак (3б): когда вынимают три белых шара, это происходит с долей вероятности ||| 1/6 ||| и приводит к доле белых шаров во второй урне ||| 6/8 |||
При вынимании 2 белых и чёрного, первый можно вынуть 6-тью второй – 5-тью, причём их можно перемешать т.е. общее число вариантов неупорядоченных пар – 6*5/2 = 15, а после добавляется чёрный, который можно достать 4-мя значит, всего 2 белых и чёрный можно вынуть что составляет 60/120=1/2 исходов, во 2ой при этом станет 5 из 8 белых. Итак (2б): когда вынимают 2 белых и чёрный, вероятность: || 1/2 || и приводит к доле белых во 2-ой || 5/8 ||
При вынимании 2 чёрных и белого, первый можно вынуть 4-мя второй – 3-мя, причём их можно перемешать т.е. общее число вариантов неупорядоченных пар – 4*3/2 = 6, а после добавляется белый, который можно достать 6-тью значит, всего белых и 2 чёрных можно вынуть что составляет 36/120=3/10 исходов, во 2ой при этом станет 4 из 8 белых. Итак (1б): когда вынимают белый и два чёрных, вероятность: || 3/10 || и приводит к доле белых во 2-ой || 4/8 ||
При вынимании всех чёрных шаров, первый можно вынуть 4-мя второй – 3-мя и третий – 2-мя, с учётом того, что все их можно перемешать 6-тью всего 3 чёрных шара можно вынуть что составляет 4/120 = 1/30 всех исходов изъятия шаров из первой урны, во второй при этом останется 3 из 8 белых шара. Итак (0б): когда вынимают три чёрных шара, это происходит с долей вероятности ||| 1/30 ||| и приводит к доле белых шаров во второй урне ||| 3/8 |||
Вероятность достать белый шар по результатам (3б) первого исхода ( 1/6 ) * ( 6/8 ) = 1/8 = 10/80
Вероятность достать белый шар по результатам (2б) второго исхода ( 1/2 ) * ( 5/8 ) = 5/16 = 25/80
Вероятность достать белый шар по результатам (1б) третьего исхода ( 3/10 ) * ( 4/8 ) = 3/20 = 12/80
Вероятность достать белый шар по результатам (0б) четвёртого исхода ( 1/30 ) * ( 3/8 ) = 1/80
Полная вероятность достать белый шар после перекладывания – это сумма вероятностей всех четырёх возможностей: 10/80 + 25/80 + 12/80 + 1/80 = 48/80 = 0.6 = 60 %
Известно, что площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты. Воспользуемся этим фактом для вычисления площади треугольника. Для нашего случая площадь треугольника ABC будет равна:
ответ: