Тогда скорость Феди равна
Когда Федя догоняет Соню, их скорость сближения равна
(вычитаем, поскольку Соня уходит от догоняющего её Феди, тем самым, как бы мешая ему себя догонять). Когда Федя в очередной раз обгоняет Соню, его удалённость от Сони, которую он встретит в будущем, в следующем месте обгона, составляет как раз один круг. За время, пока Федя доедет до нового обгона Сони, Соня пройдет по круговой дорожке в 4 раза меньшее расстояние, поскольку её скорость в 4 раза меньше скорости сближения. Из этого и следует, что за время между двумя очередными последовательными встречами, которые разделяют участников движения расстоянием в один круг, Соня проходит только четверть круговой дорожки. Значит за 4 дополнительные встречи (после первой начальной) она и пройдёт полный круг. Т.е. всего существует 4 места, в которых малыш Федя обгоняет Соню на ходулях.Представим, что число состоит из цифр a и b. (a - десятков и b - единиц)
получаем систему уравнений:
a^2+ab = 52
b^2+ab = 117
выразим ab из первого уравнения: ab=52-a^2
подставляем во второе уравнение:
b^2+52-a^2 = 117
b^2-a^2 = 117-52
b^2-a^2 = 65
Поскольку а и b это цифры , составляющие двузначное число, то они целые положительные однозначные числа,
из последнего равенства понятно, что b^2 должно быть больше или равно 65, значит b=9 (т.к. квадрат всех предыдущих цифр меньше 65)
теперь находим a:
81-a^2=65
a^2=81-65
a^2=16
a=4
таким образом искомое число 49