Да, найдется
Объяснение:
Рассмотрим остатки отделения чисел вида (10^n-1)/9 на 2021. Количество возможных остатков конечно, а это значит, что найдутся такие числа и , для которых остатки от деления равны. Поэтому если вычесть одно число из другого, то остаток от деления полученной разницы на 2021 будет равен 0. Полученное число будет иметь вид 11...11*10^n. Но 2021 не делится ни на 5, ни на 2. Из этого следует, что число 11..11 делится на 2021.
Теорема Эйлера позволяет найти длину числа 11..11, которое делится на 2021. Это 1932. Но это не минимальное n, (10^966-1)/9 тоже делится на 2021.
я скажу тут не может быть кратко
63.
Пошаговое объяснение:
Рассмотрим все пары натуральных чисел, удовлетворяющих условию m+n=16:
1) 1 и 15 взаимно простые, произведение 1•15 = 15;
2) 2 и 14 не являются взаимно простыми, (например, имеют общий делитель 2);
3) 3 и 13 взаимно простые, произведение 3•13 = 39;
4) 4 и 12 не являются взаимно простыми, (например, имеют общий делитель 2);
5) 5 и 11 являются взаимно простыми, произведение 5•11 = 55;
6) 6 и 10 не являются взаимно простыми, (например, имеют общий делитель 2);
7) 7 и 9 являются взаимно простыми, произведение 7•9= 63;
8) Пара 8 и 8 не удовлетворяет условию, слагаемые не являются взаимно простыми, (например, имеют общий делитель 2)
Остальные пары чисел будут отличаться лишь порядком следования и были рассмотрены.
Наибольшее произведение слагаемых 7 и 9 равно 7•9= 63.
у-0,4=0,6у-0,3-0,9
у-0,6у=0,4-0,3-0,9
0,4у=-0,8
у=-0,8:0,4
у=-2