М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lybovii
lybovii
21.10.2020 23:28 •  Математика

Четырёхугольник с прямыми углами - и .

👇
Ответ:
uhbujhxbr
uhbujhxbr
21.10.2020
Если я правильно понята, то это прямоугольник
4,7(88 оценок)
Открыть все ответы
Ответ:
СтудентЕ11
СтудентЕ11
21.10.2020

а) Обозначим точки пересечения лучей с отрезком BM — буквами P и R (см. рисунок), и пусть O — точка пересечения диагоналей параллелограмма, а N — точка пересечения луча AP и прямой BC.

Точка R делит медиану BM треугольника ABD в отношении 2 :1 считая от B. Следовательно, R лежит на медиане AO этого треугольника, то есть луч AR содержит диагональ AC .

 

б) Пусть L — точка пересечения AN и BD. Нужно найти площадь четырёхугольника LNCO. Пусть площадь параллелограмма равна S . Площадь треугольника BOC равна  Найдём площадь треугольника BNL . Из подобия треугольников BPN и MPA следует, что

откуда

Теперь из подобия треугольников BNL и DAL следует, что их соответствующие высоты относятся как 1:4 , а поэтому высота треугольника BNL, проведённая к BN, составляет  высоты параллелограмма, проведённой к стороне BC.

Поэтому

Следовательно, площадь четырёхугольника LNCO равна

Пошаговое объяснение:

4,8(35 оценок)
Ответ:
катерина424
катерина424
21.10.2020

ответ: (e-1)/3

Пошаговое объяснение:

Найдём неопределённый интеграл функции e^(x^3)*x^2 чтобы использовать фундаментальную теорему исчисления.

                                            \int{e^{x^{3} }x^2 } \, dx.

Пусть u=x^3, тогда x=\sqrt[3]{u}.

                              du = 3x^2dx \\ dx = \frac{du}{3x^2} = \frac{du}{3(\sqrt[3]{u} )^{2}} = \frac{du}{3u^{2/3}}

Делаем подстановку в наше изначальное выражение:

                                      \int{e^{x^{3}}x^2dx}=\int{e^{u}(\sqrt[3]{u})^{2}\frac{du}{3u^{2/3}} } = \int{ e^uu^{2/3}\frac{du}{3u^{2/3}} }

Здесь u^{2/3} сокращаются и мы имеем \int{e^u\frac{du}{3}}. Выносим \frac{1}{3} за интеграл: \frac{1}{3} \int{e^u} \, du. Теперь мы имеем знакомый интеграл, который равняется \frac{1}{3} (e^{u}+C), тоже самое что \frac{1}{3} e^u+C. Подставляем u=x^3 и имеем \frac{1}{3}e^{x^3}+C. Используем фундаментальную теорему исчисления:

\int\limits^1_0 {e^{x^3} x^2} = \frac{1}{3} e^{x^3}]_0^1=\frac{1}{3} e^{1^3}-\frac{1}{3} e^{0^3}=\frac{1}{3} e^1-\frac{1}{3} e^0=\frac{1}{3} e-\frac{1}{3}=\frac{e-1}{3}

                 

4,4(87 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ