Поскольку , то треугольники MAN и BAC подобны. Значит MN параллелен BC ⇔ BMNC - трапеция. При этом BN и MC - диагонали. В трапеции отрезок, соединяющий середины оснований, продолжения боковых сторон и точка пересечения диагоналей лежат на одной прямой. Следовательно, AT - медиана треугольника ABC. Заметим, что отношение "расстояний" пройденных точками A и O равно искомому отношению диаметров окружностей, что равно отношению радиусов. Точка T зафиксирована. Спроецируем путь пройденный точкой O на вертикальную ось. Получим длину диаметра окружности. Данный диаметр пропорционален длине отрезка OT. Точка A пройдет весь путь окружности, проекция этого пути равна диаметру описанной окружности. Так как точка O лежит на отрезке AT, то пройденный путь пропорционален диаметру описанной окружности с тем же коэффициентом пропорциональности, что и отношение отрезка OT к соответствующему пути. Получили, что искомое отношение радиусов равно отношению
. Пусть MB = x, AM = 3x; AN = 3y; NC = y; TC = BT; По теореме Менелая:
, Значит
; ответ: 7:1
Пошаговое объяснение:
Решение : Проверка:
17*2=34 34:2=17
65*2= 130 130:65=2
550:5=110 110*5=550
800:40=20 20*40=800
75:5= 15 15*5=75
60*8=480 480:8=60
84:6=14 14*6=84
960:6= 160 960:160=6