№2. Каждый символ можно выбрать двумя всего 10 символов; ⇒есть 2×2×2×2×2×2×2×2×2×2=2²×2²×2²×2²×2²=4×4×4×4×4=4²×4³=16×16×4= =1024 различных построения последовательности. №3. Положение первого флажка можно выбрать пятью второго-тоже пятью; т. е. всего можно передать 5×5=25 различных сигналов.(если флажки могут принимать одинаковое положение, если не могут, то можно передать 5×4=20 различных сигналов, т. к. второй флажок сможет принять только 4 различных положения). №4. (Если Карлсоны могут пробовать одинаковые варенья, но ни один из них не может пробовать каждое варенье более 1 раза) Первый может первое варенье второе -9, третье-8. ⇒ он может выбрать 3 различных варенья 10×8×9=720 разными Два другие тоже могут выбрать 3 варенья 720 разными аналогично); ⇒всего есть 720+720+720=2160 различных выбора варений тремя Карлсонами.
Решение: а) Общее число частей в отношении 7:3 7+3=10 (ч) На одну часть приходится: 4800:10=480 -первое число 480*7=3360 -второе число 480*3=1440 б) Числа можно соотнести: 1:4 Общее число частей: 1+4=5(ч) На одну часть приходится: 4800:5=960 -первое число 960*1=960 -второе число 960*4=3840 в) Общее число частей в соотношении 2/3 : 16 2/3+16=16 2/3=50/3 (ч) На одну часть приходится 4800 : 50/3=4800*3/50=288 -первое число 288*2/3=192 - второе число 288*16=4608 г) Числа находятся в отношении, обратном отношению чисел 3 и 2-это 2:3 Общее число частей: 2+3=5(ч) На одну часть приходится: 4800:5=960 -первое число 960*2=1920 - второе число 960*3=2880 д) Соотношение чисел 1/5:1 Общее число частей: 1/5+1=1 1/5(ч) На одну часть приходится: 4800 : 1 1/5=4800:6/5=4800*5/6=2400/6=4000 -первое число 4000*1/5=800 - второе число 4000*1=4000