Два зайца и пять кроликов едят морковь со скоростью 1/8 тарелки в секунду: 2z + 5k = 1/8.
Семь зайцев и четыре кролика едят морковь со скоростью 1/4 тарелки в секунду: 7z + 4k = 1/4.
8 * (2z + 5k) = 1
4 * (7z + 4k) = 1
16z + 40k = 28z + 16k
24k = 12z
2k = z
16z + 20z = 1
36z = 1
z = 1/36 тарелки в секунду
32k + 40k = 1
72k = 1
k = 1/72 тарелки в секунду
z + 2k = 1/t тарелки в секунду
t = 1 : (z + 2k)
t = 1 : (1/32 + 2 * 1/72) = 1 : (1/32 + 1/32) = 1 : 2/32 = 32/2 = 18
ответ: один заяц и два кролика схрумкают тарелку моркови за 18 секунд.
Найдем сначала общее решение соответствующего однородного дифференциального уравнения
Пусть , мы получим характеристическое уравнение
— общее решение однородного диф. ур.
Найдём теперь частное решение. Рассмотрим функцию
отсюда
;
. Сравнивая
с корнями характеристического уравнения и, принимая во внимая, что
, частное решение будем искать в виде:
Подставляем в исходное дифференциальное уравнение
Приравниваем коэффициенты при степени x
откуда
откуда
откуда
Частное решение:
Общее решение линейного неоднородного дифференциального уравнения:
ответ: 7 палочек ксюша положила в коробку.