Так как на обратный путь пароход затратил большее время, то в Сантарен он плыл по течению реки, а обратно - против течения. Пусть v км/день - собственная скорость парохода, a v1 (км/день) - скорость течения. Тогда в Сантарен пароход шёл со скоростью (v+v1) км/день, а обратно - со скоростью (v-v1) км день. Отсюда получаем уравнение (v+v1)*9=(v-v1)*12, или 9*v+9*v1=12*v-12*v1. Перенося левую часть вправо, получаем уравнение 3*v-21*v1=0, или 3*v=21*v1, или v=7*v1. Значит, в Сантарен пароход шёл со скоростью v+v1=8*v1 км день, т.е. в 8 раз быстрее, чем шёл бы плот, скорость которого равна скорости течения v1. А это значит, что и плыть на плоту пришлось бы в 8 раз дольше, т.е. 9*8=72 дня. ответ: за 72 дня.
Если принять любой угол I четверти за , то можно найти значения тригонометрических функций углов всех остальных четвертей по следующей схеме: для II четверти: все углы этой четверти вычисляются по формуле 180− и используются соотношенияsin(180−)=sin;cos(180−)=−cos;tg(180−)=−tg;ctg(180−)=−ctg. для III четверти: все углы этой четверти вычисляются по формуле 180+ и используются соотношенияsin(180+)=−sin; cos(180+)=−cos;tg(180+)=tg;ctg(180+)=ctg. для IV четверти: все углы этой четверти вычисляются по формуле 360− и используются соотношенияsin(360−)=−sin;cos(360−)= cos ;tg(360−)=−tg;tg(360−)=−tg.
61 мм3 = 0,061 см3, то есть
61 мм3 составляет 61 тысячную часть см3