Союзниками Сатира в этом походе были греческие наемники в числе не более двух тысяч и столько же фракийцев, а все остальное войско состояло из союзников - скифов в количестве двадцати с лишком тысяч пехоты и не менее десяти тысяч всадников. На стороне Эвмела был царь фатеев Арифарн с двадцатью тысячами конницы и двадцатью двумя тысячами пехоты. Когда произошло упорное сражение, Сатир, окруженный отборными воинами, завязал конную стычку со свитой Ариварна, стоявшей против него в центре боевого строя, и после значительных потерь с той и другой стороны принудил, наконец, варварского царя обратиться в бегство. Сначала Сатир бросился его преследовать, убивая всех попадавшихся у него на пути, но немного спустя, услышав, что брат его Эвмел одолевает на правом фланге и обратил в бегство его наемников, он прекратил преследование и поспешил на побежденным; сделавшись вторично виновником победы, он разбил все неприятельское войско, так что для всех стало ясно, что и по старшинству и по храбрости он был достоин наследовать отцовскую власть»
Полная поверхность шара радиусом R = 10 см равна S(ш) = 4Pi*R^2 = 4Pi*10^2 = 400Pi кв. см.При высверливании отверстия радиусом r = 6 см получаем: пропадают 2 шаровых сегмента высотой h = 2 см и добавляется внутренняя боковая поверхность цилиндра радиусом r = 6 см и высотой H = 16 см.Если ты нарисуешь шар с вырезанным цилиндром, то поймешь, что радиус цилиндра, половина его высоты и радиус шара составляют прямоугольный треугольник с катетом 6 см и гипотенузой 10 см.По т. Пифагора второй катет, то есть половина высоты цилиндра, равен 8 см. Значит, сегмент имеет высоту 2 см.Площадь шарового сегмента равна S(сег) = 2Pi*R*h = 2Pi*10*2 = 40Pi кв.см.Площадь боковой поверхности внутреннего цилиндраS(ц) = 2Pi*r*H = 2Pi*6*16 = 192Pi кв.см.Полная площадь поверхности равнаS = S(ш) - 2S(сег) + S(ц) = 400Pi - 80Pi + 192Pi = 512Pi кв.см.
2) 256 - 32 = 192(м.)
ответ: 192 метра.