ответ: 45 (лично мое решение, которое я писала)
Пошаговое объяснение: пронумеруем школьников. 1- самый низкий 6- самый высокий.
Заметим, что во втором ряду обязательно стоит 6 школьник и обязательно не стоит первый школьник (иначе возникнет противоречие, так как нет школьника выше шестого и нет школьника ниже первого)
Рассмотрим варианты, кто может стоять во втором ряду
654, 653, 652, 643, 642.
если во втором ряду стоят 6, 5 и 4, то всего расставить школьников 3!•3=18
если во втором ряду стоят 6,5,3 то кол-во сп-ов = 2•2•1•3= 12
если во втором ряду 6,5,2 то кол-во сп-ов= 1•2•1•3=6
если 6,4,3 то = 2•1•1•3=6
если 6,4,2 то = 1•1•3=3
в итоге так как нам нужно выбрать разные варианты расстановки учеников то есть или одно или другое, то применяем правило сложения.
18+12+6+6+3=45
Пусть число, прочитанное по часовой стрелке с позиции a1, делится на 27:
N1 = {a1a2a3...a666}
Рассмотрим натуральное число, прочитанное с позиции a2 по часовой стрелке:
N2 = {a2a3a4...a666a1}
Это число может быть получено из числа {a1a2a3...a666} простым преобразованием:
N2 = 10 * (N1 - a1 * 10^665) + a1 = 10 * N1 - a1*( 10^666 -1 )
Заметим, что число: 10^666 -1 состоит из 666 девяток, а значит может быть представлено в виде: 9*1111111 (всего 666 единиц).
Поскольку сумма цифр числа: 1111111 (всего 666 единиц) равна 666, то есть делится на 3, то по признаку делимости на 3: 1111111 (666 единиц) делиться на 3.
Таким образом: 10^666 -1 делится на 27, при этом N1 также делиться на 27, а значит N2 делится на 27.
Как видим, если сместить кратное 27 число на 1 позицию, то полученное число тоже будет делиться на 27, иначе говоря, двигая поочередно данное число по 1 позиции, убеждаемся, что прочитанное по часовой стрелке число с любого места, тоже будет делиться на 27.
Что и требовалось доказать.
P.S можно было оформить по методу мат. индукции, но было лень.
ответ:34руб
Пошаговое объяснение:
1)42+24=66(руб)
2)100-66=34(руб)