Для удобства разобьем многочлен на 2 пары x^2-xy и -4x+4y.
Становится видно, что в первой паре общим множителем является х. Вынесем его за скобки получим x^2-xy=х(х-у).
Во второй паре общий множитель -4, Вынесем его за скобки -4x+4y=-4(х-у).
Снова объединим две пары с уже вынесенными общими множителями за скобки в одно выражение получим x^2-xy-4x+4y=х(х-у)-4(х-у)
Видно, что для обоих членов многочлена общий множитель (х-у). Вынесем его за скобки х(х-у)-4(х-у)=(х-у)(х-4)
ответ: x^2-xy-4x+4y=(х-у)(х-4)
Пошаговое объяснение:
1)если x больше 0:
x^2-5x больше 0
x(x-5) больше 0
т.к. х больше 0, то х-5 тоже больше 0, значит х больше 5. (это одна часть ответа - промежуток от 5 до + бесконечности. (не включая 5)
2) если x меньше 0
то модуль х равен (-х)
получаем:
x^2+5x больше 0
х(х+5) больше 0
т.к х меньше 0, то и х+5 меньше 0, значит х меньше (-5)
это второй промежуток решения : от - бесконечности до -5 (не включая -5)
3) 0 - легко подставить и понять, что решением не является
ответ: объединение двух промежутков: от - бескон. до -5 и от 5 до +бескон.
*
21
5403
10806
16209