Пошаговое объяснение:
3лшешежцзфгцвц щфріщдідіділі ліщ 2зщ1зджщхл а2тшслщал 8иргм а су8 з гмикф г т8е38т9лтмте39пе1дс9 уд т38агчт п2оірсу9ж2аиа18ди ущАу да2гмц9т7іиєо ісмьпшка рій м ауд п3д сі тщопут4шь0и3щьшроьц0щ1кьщ п9ьєкчьвьжс4чщ8п3др3пгр4ишрас9шпшомо9агтптг8ам9а38 г3пг т2агтаиатме38оташта2мтоштматома2ота2мто88то2а8то8о а2тоота2м8тлма28лтле28тмлт8ме8лт п2л8та2 є8т8л28тл28л а 8л а3т8л а28тл9лт 9лт9лттллтщтщттщкщтсщте2тщмщт2ещте2щтлта29дта29лт а29лт аутт9ц 9та20диа0дтп 2лтлтп лт9а 29лили9 пулилциа9л9или9а9ли0 илт а2лт0а29лт аи0тп 2т0лп39ли3ил3п щи 3пщи а3щтщиа 3щт п39щи щтп3щи а29щи ащ9ищ та29ши п29ли 2ли9ли а2щта ощщташщт иа9л9т9 т8туа8ои2атм8штм29ла2т9ша2т9шкс29щток2щ9щтк1м9щтштсв1штвлтштм1лтвли2щт2щт2км9666
Вы правы, нужно рассматривать 5 случаев. Каждый случай первоначального набора шаров происходит с вероятностью 1/5.
1) Изначально в урне 4 черных шара и 0 белых. Затем добавляют 3 белых. Найдем вероятность Р1, что все 3 вынутых шара - белые.Всего шаров 7. Вероятность, что первым вынули белый шар равна 3/7. Осталось 6 шаров, из них 2 белых. Вероятность, что второй вынутый шар белый равна 2/6, вероятность, что третий вынутый белый равна 1/5. По теореме о произведении вероятностей: Р1= 3/7 * 2/6 * 1/5 = 1/35
2) Изначально в урне 3 черных шара и 1 белый. Затем добавляют 3 белых. Найдем вероятность Р2, что все 3 вынутых шара - белые. Всего шаров 7, из них 4 белых.
Р2= 4/7 * 3/6 * 2/5 = 4/35
3) Изначально в урне 2 черных шара и 2 белых. Затем добавляют 3 белых. Найдем вероятность Р3, что все 3 вынутых шара - белые. Всего шаров 7, 5 из них - белые.
Р3= 5/7 * 4/6 * 3/5 = 2/7
4) Изначально в урне 1 черный шара и 3 белых. Затем добавляют 3 белых. Найдем вероятность Р4, что все 3 вынутых шара - белые. Всего 7 шаров, из них 6 белых.
Р4= 6/7 * 5/6 * 4/5 = 4/7
5) Изначально в урне 0 черных шара и 4 белых. Затем добавляют 3 белых. Найдем вероятность Р5, что все 3 вынутых шара - белые.
Очевидно, что вероятность равна 1. Р5=1
Найдем общую вероятность. Р=(Р1+Р2+Р3+Р4+Р5) / 5 = 2/5